Skip to main content
Top
Published in: Autonomous Robots 8/2017

28-02-2017

Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling

Authors: Sawyer B. Fuller, Zhi Ern Teoh, Pakpong Chirarattananon, Néstor O. Pérez-Arancibia, Jack Greenberg, Robert J. Wood

Published in: Autonomous Robots | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most hovering aircraft such as helicopters and animal-inspired flapping-wing flyers are dynamically unstable in flight, quickly tumbling in the absence of feedback control. The addition of feedback loops can stabilize, but at the cost of additional sensing and actuation components. This can add expense, weight, and complexity. An alternative to feedback is the use of passive mechanisms such as aerodynamic drag to stabilize attitude. Previous work has suggested that small aircraft can be stabilized by adding air dampers above and below the center of mass. We present flight tests of an insect-scale robot operating under this principle. When controlled to a constant altitude, it remains stably upright while undergoing cyclic attitude oscillations. To characterize these oscillations, we present a nonlinear analytic model derived from first principles that reproduces the observed behavior. Using numerical simulation, we analyze how changing damper size, position, mass, and midpoint offset affect these oscillations, building on previous work that considered only a single configuration. Our results indicate that only by increasing damper size can lateral oscillation amplitude be significantly reduced, at the cost of increased damper mass. Additionally, we show that as scale diminishes, the damper size must get relatively larger. This suggests that smaller damper-equipped robots must operate in low-wind areas or in boundary-layer flow near surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
A detailed analysis suggests that if instead the damper is considered to be made of beams that must support the load of a impact landing, quadratic scaling is reasonable. We consider the damper support structure as a simply-supported beam. We neglect the mass of the polyester layer because it has similar density (\(\approx \)15  kg/m\(^{3}\)) to carbon fiber but a much lower thickness, at \(3~\upmu \) m compared to \(80~\upmu \) m for the carbon fiber composite. Assume the maximum force the beam is expected to support is \(F^{*}\), caused by, for example, crash landings. Then the greatest moment applied to the beam of length l occurs at its base, and is equal to \(M^{*}=F^{*}l\). Suppose the beam has a width w and thickness t (\(\approx \)80 \(\upmu \) m for our material). Tensile stress inside the beam at its base is \(\sigma =\frac{M^{*}y}{I}\), where \(I=\frac{wt^{3}}{12}\) is the moment of inertia of the rectangular beam and y is the distance from its centerline. Then maximum stress \(\sigma ^{*}\) in the material occurs at the top and bottom of the beam, and is equal to3 \(\sigma ^{*}=\frac{M^{*}t/2}{I}\).
Our interest is in a scaling law that, for a constant load \(F^{*}\) and material strength \(\sigma ^{*}\), gives the mass of the damper. Substituting the above equations into each other, we find that, for constant t (that is, a fixed fabrication process), the width of the beam must be \(w=6\frac{F^{*}}{\sigma ^{*}}\frac{l}{t^{2}}\). The mass of a single beam is \(m=\rho lwt\), where \(\rho \) is the density of the material. Substituting, we find that the mass must be \(m=6\rho \frac{F^{*}}{\sigma ^{*}}\frac{l^{2}}{t}\), or, written more succinctly, \(m=k_{m}l^{2}\) for all other terms kept constant. To find the value of \(k_{m}\), rather than compute these terms, we simply calibrate it to a damper design that, after a few iterations, has been found to support the necessary loads. In this case, the damper consists of many separate beams, all of which are of the same thickness of carbon fiber and must support similar loads.
 
Literature
go back to reference Abzug, M. J., & Larrabee, E. E. (2002). Airplane stability and control. A history of the technologies that made aviation possible (2nd ed.). Cambridge: Cambridge University Press.CrossRef Abzug, M. J., & Larrabee, E. E. (2002). Airplane stability and control. A history of the technologies that made aviation possible (2nd ed.). Cambridge: Cambridge University Press.CrossRef
go back to reference Åström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press. Åström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.
go back to reference Blevins, R. D. (2015). Formulas for dynamics, acoustics and vibration. New York: Wiley.CrossRef Blevins, R. D. (2015). Formulas for dynamics, acoustics and vibration. New York: Wiley.CrossRef
go back to reference Chirarattananon, P. C., & Wood, R. J. (2013). Identification of flight aerodynamics for flapping-wing microrobots. In 2013 IEEE international conference on robotics and automation (ICRA). Chirarattananon, P. C., & Wood, R. J. (2013). Identification of flight aerodynamics for flapping-wing microrobots. In 2013 IEEE international conference on robotics and automation (ICRA).
go back to reference De Croon, G., De Clercq, K., Ruijsink, R., Remes, B., & De Wagter, C. (2009). Design, aerodynamics, and vision-based control of the delfly. International Journal of Micro Air Vehicles, 1(2), 71–97.CrossRef De Croon, G., De Clercq, K., Ruijsink, R., Remes, B., & De Wagter, C. (2009). Design, aerodynamics, and vision-based control of the delfly. International Journal of Micro Air Vehicles, 1(2), 71–97.CrossRef
go back to reference Dickinson, M. H. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, drosophila melanogaster. Philosophical Transactions of the Royal Society of London B, 354, 903–916.CrossRef Dickinson, M. H. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, drosophila melanogaster. Philosophical Transactions of the Royal Society of London B, 354, 903–916.CrossRef
go back to reference Dickinson, M. H., & Götz, K. G. (1996). The wake dynamics and flight forces of the fruit fly drosophila melanogaster. Journal of Experimental Biology, 199(9), 2085–2104. Dickinson, M. H., & Götz, K. G. (1996). The wake dynamics and flight forces of the fruit fly drosophila melanogaster. Journal of Experimental Biology, 199(9), 2085–2104.
go back to reference Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954–1960.CrossRef Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954–1960.CrossRef
go back to reference Dudley, R. (2002). The biomechanics of insect flight: Form, function, evolution. Princeton: Princeton University Press. Dudley, R. (2002). The biomechanics of insect flight: Form, function, evolution. Princeton: Princeton University Press.
go back to reference Eberle, A., Dickerson, B., Reinhall, P. G., & Daniel, T. (2015). A new twist on gyroscopic sensing: Body rotations lead to torsion in flapping, flexing insect wings. Journal of the Royal Society Interface, 12(104), 20141,088.CrossRef Eberle, A., Dickerson, B., Reinhall, P. G., & Daniel, T. (2015). A new twist on gyroscopic sensing: Body rotations lead to torsion in flapping, flexing insect wings. Journal of the Royal Society Interface, 12(104), 20141,088.CrossRef
go back to reference Ellington, C. P. (1984). The aerodynamics of hovering insect flight. ii. Morphological parameters. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 305(1122), 17–40. doi:10.1098/rstb.1984.0050.CrossRef Ellington, C. P. (1984). The aerodynamics of hovering insect flight. ii. Morphological parameters. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 305(1122), 17–40. doi:10.​1098/​rstb.​1984.​0050.CrossRef
go back to reference Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(19), 626–630.CrossRef Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(19), 626–630.CrossRef
go back to reference Fearing, R., Chiang, K., Dickinson, M., Pick, D., Sitti, M., & Yan, J. (2000). Wing transmission for a micromechanical flying insect. In IEEE international conference on robotics and automation (ICRA) vol. 2, (pp. 1509–1516). Fearing, R., Chiang, K., Dickinson, M., Pick, D., Sitti, M., & Yan, J. (2000). Wing transmission for a micromechanical flying insect. In IEEE international conference on robotics and automation (ICRA) vol. 2, (pp. 1509–1516).
go back to reference Finio, B. M., Pérez-Arancibia, N. O., & Wood, R. J. (2011). System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). Finio, B. M., Pérez-Arancibia, N. O., & Wood, R. J. (2011). System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS).
go back to reference Fuller, S. B., Helbling, E. F., Chirarattananon, P., & Wood, R. J. (2014a). Using aMEMS gyroscope to stabilize the attitude of a fly-sized hovering robots. In 2014 International conference on micro air vehicle (IMAV), Delft, The Netherlands. Fuller, S. B., Helbling, E. F., Chirarattananon, P., & Wood, R. J. (2014a). Using aMEMS gyroscope to stabilize the attitude of a fly-sized hovering robots. In 2014 International conference on micro air vehicle (IMAV), Delft, The Netherlands.
go back to reference Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y., & Wood, R. J. (2014b). Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Jouranl of the Royal Society Interface. doi:10.1098/rsif.2014.0281. Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y., & Wood, R. J. (2014b). Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Jouranl of the Royal Society Interface. doi:10.​1098/​rsif.​2014.​0281.
go back to reference Gravish, N., Peters, J. M., Combes, S. A., & Wood, R. J. (2015). Collective flow enhancement by tandem flapping wings. Physical Review Letters, 115(18), 188101.CrossRef Gravish, N., Peters, J. M., Combes, S. A., & Wood, R. J. (2015). Collective flow enhancement by tandem flapping wings. Physical Review Letters, 115(18), 188101.CrossRef
go back to reference Helbling, E. F., Fuller, S. B., & Wood, R. J. (2014). Pitch and yaw control of a robotic insect using an onboard magnetometer. In 2014 IEEE international conference on robotics and automation (ICRA). Helbling, E. F., Fuller, S. B., & Wood, R. J. (2014). Pitch and yaw control of a robotic insect using an onboard magnetometer. In 2014 IEEE international conference on robotics and automation (ICRA).
go back to reference Hoerner, S. F. (1965). Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Midland Park: Hoerner Fluid Dynamics. Hoerner, S. F. (1965). Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Midland Park: Hoerner Fluid Dynamics.
go back to reference Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In AIAA aerospace sciences meeting, AIAA, Reston, VA (pp. 1–24). doi:10.2514/6.2012-588. Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In AIAA aerospace sciences meeting, AIAA, Reston, VA (pp. 1–24). doi:10.​2514/​6.​2012-588.
go back to reference Kroo, I., & Kunz, P. (2000). Development of the mesicopter: A miniature autonomous rotorcraft. In American helicopter society (AHS) vertical lift aircraft design conference, San Francisco, CA. Kroo, I., & Kunz, P. (2000). Development of the mesicopter: A miniature autonomous rotorcraft. In American helicopter society (AHS) vertical lift aircraft design conference, San Francisco, CA.
go back to reference Ma, K. Y., Felton, S. M., & Wood, R. J. (2012). Design, fabrication, and modeling of the splitactuator microrobotic bee. In 2012 IEEE international conference on robotics and automation (ICRA), St. Paul, MN (pp. 1133–1140). Ma, K. Y., Felton, S. M., & Wood, R. J. (2012). Design, fabrication, and modeling of the splitactuator microrobotic bee. In 2012 IEEE international conference on robotics and automation (ICRA), St. Paul, MN (pp. 1133–1140).
go back to reference Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603–607.CrossRef Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603–607.CrossRef
go back to reference Macnab, R. M., & Koshland, D. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 69(9), 2509–2512.CrossRef Macnab, R. M., & Koshland, D. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 69(9), 2509–2512.CrossRef
go back to reference Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., & Wood, R. J. (2011). First controlled vertical flight of a biologically inspired microrobot. Bioinspiration and Biomimetics, 6(3), 036009. doi:10.1088/1748-3182/6/3/036009. Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., & Wood, R. J. (2011). First controlled vertical flight of a biologically inspired microrobot. Bioinspiration and Biomimetics, 6(3), 036009. doi:10.​1088/​1748-3182/​6/​3/​036009.
go back to reference Pesavento, U., & Wang, Z. (2009). Flapping wing flight can save aerodynamic power compared to steady flight. Physical Review Letters, 103(11), 118,102.CrossRef Pesavento, U., & Wang, Z. (2009). Flapping wing flight can save aerodynamic power compared to steady flight. Physical Review Letters, 103(11), 118,102.CrossRef
go back to reference Pringle, J. W. S. (1948). The gyroscopic mechanism of the halteres of diptera. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 233(602), 347–384.CrossRef Pringle, J. W. S. (1948). The gyroscopic mechanism of the halteres of diptera. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 233(602), 347–384.CrossRef
go back to reference Richter, C., & Lipson, H. (2011). Untethered hovering flapping flight of a 3d-printed mechanical insect. Artificial Life, 17(2), 73–86.CrossRef Richter, C., & Lipson, H. (2011). Untethered hovering flapping flight of a 3d-printed mechanical insect. Artificial Life, 17(2), 73–86.CrossRef
go back to reference Ristroph, L., Bergou, A. J., Ristroph, G., Coumes, K., Berman, G. J., Guckenheimer, J., et al. (2010). Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proceedings of the National Academy of Sciences, 107(11), 4820–4824. doi:10.1073/pnas.1000615107.CrossRef Ristroph, L., Bergou, A. J., Ristroph, G., Coumes, K., Berman, G. J., Guckenheimer, J., et al. (2010). Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proceedings of the National Academy of Sciences, 107(11), 4820–4824. doi:10.​1073/​pnas.​1000615107.CrossRef
go back to reference Ristroph, L., Ristroph, G., Morozova, S., Bergou, A. J., Chang, S., Guckenheimer, J., et al. (2013). Active and passive stabilization of body pitch in insect flight. Journal of the Royal Society Interface. doi:10.1098/rsif.2013.0237. Ristroph, L., Ristroph, G., Morozova, S., Bergou, A. J., Chang, S., Guckenheimer, J., et al. (2013). Active and passive stabilization of body pitch in insect flight. Journal of the Royal Society Interface. doi:10.​1098/​rsif.​2013.​0237.
go back to reference Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. The Journal of Experimental Biology, 204, 2607–2626. Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. The Journal of Experimental Biology, 204, 2607–2626.
go back to reference Sane, S. P., Dieudonné, A., Willis, M. A., & Daniel, T. L. (2007). Antennal mechanosensors mediate flight control in moths. Science, 315(5813), 863–866. doi:10.1126/science.1133598. Sane, S. P., Dieudonné, A., Willis, M. A., & Daniel, T. L. (2007). Antennal mechanosensors mediate flight control in moths. Science, 315(5813), 863–866. doi:10.​1126/​science.​1133598.
go back to reference Sreetharan, P., & Wood, R. J. (2011). Passive torque regulation in an underactuated flapping wing robotic insect. Autonomous Robots, 31(2–3), 225–234.CrossRef Sreetharan, P., & Wood, R. J. (2011). Passive torque regulation in an underactuated flapping wing robotic insect. Autonomous Robots, 31(2–3), 225–234.CrossRef
go back to reference Teoh, Z. E., Fuller, S. B., Chirarattananon, P. C., Pérez-Arancibia, N. O., Greenberg, J. D., & Wood, R. J. (2012). A hovering flapping-wing microrobot with altitude control andpassive upright stability. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vilamoura, Algarve, Portugal (pp. 3209–3216). Teoh, Z. E., Fuller, S. B., Chirarattananon, P. C., Pérez-Arancibia, N. O., Greenberg, J. D., & Wood, R. J. (2012). A hovering flapping-wing microrobot with altitude control andpassive upright stability. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vilamoura, Algarve, Portugal (pp. 3209–3216).
go back to reference Trimmer, W. S. N. (1989). Microbots and micromechanical systems. Sensors and Actuators, 19, 267–287.CrossRef Trimmer, W. S. N. (1989). Microbots and micromechanical systems. Sensors and Actuators, 19, 267–287.CrossRef
go back to reference Ulrich, E., Pines, D., & Humbert, J. S. (2010). From falling to flying: The path to powered flight of a robotic samara nano air vehicle. Bioinspiration & Biomimetics, 5(045), 009. Ulrich, E., Pines, D., & Humbert, J. S. (2010). From falling to flying: The path to powered flight of a robotic samara nano air vehicle. Bioinspiration & Biomimetics, 5(045), 009.
go back to reference Wang, Z. J., Birch, J. M., & Dickinson, M. H. (2004). Unsteady forces and flows in low reynolds number hovering flight: Two-dimensional computations versus robotic wing experiments. Journal of Experimental Biology, 207(3), 449–460. doi:10.1242/jeb.00739.CrossRef Wang, Z. J., Birch, J. M., & Dickinson, M. H. (2004). Unsteady forces and flows in low reynolds number hovering flight: Two-dimensional computations versus robotic wing experiments. Journal of Experimental Biology, 207(3), 449–460. doi:10.​1242/​jeb.​00739.CrossRef
go back to reference Whitney, J., Sreetharan, P., Ma, K., & Wood, R. (2011). Pop-up book mems. Journal of Micromechanics and Microengineering, 21(11), 115021.CrossRef Whitney, J., Sreetharan, P., Ma, K., & Wood, R. (2011). Pop-up book mems. Journal of Micromechanics and Microengineering, 21(11), 115021.CrossRef
go back to reference Wood, R. J., Avadhanula, S., Menon, M., & Fearing, R. S. (2003). Microrobotics using composite materials: The micromechanical flying insect thorax. In 2003 ieee international conference on robotics and automation (ICRA) (vol. 2 pp. 1842–1849). doi:10.1109/ROBOT.2003.1241863. Wood, R. J., Avadhanula, S., Menon, M., & Fearing, R. S. (2003). Microrobotics using composite materials: The micromechanical flying insect thorax. In 2003 ieee international conference on robotics and automation (ICRA) (vol. 2 pp. 1842–1849). doi:10.​1109/​ROBOT.​2003.​1241863.
go back to reference Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. S. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130, 052304.CrossRef Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. S. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130, 052304.CrossRef
go back to reference Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., et al. (2007). Development and testing of the mentor flapping-wing micro air vehicle. Journal of Aircraft, 44(5), 1701–1711.CrossRef Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., et al. (2007). Development and testing of the mentor flapping-wing micro air vehicle. Journal of Aircraft, 44(5), 1701–1711.CrossRef
Metadata
Title
Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling
Authors
Sawyer B. Fuller
Zhi Ern Teoh
Pakpong Chirarattananon
Néstor O. Pérez-Arancibia
Jack Greenberg
Robert J. Wood
Publication date
28-02-2017
Publisher
Springer US
Published in
Autonomous Robots / Issue 8/2017
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9623-3

Other articles of this Issue 8/2017

Autonomous Robots 8/2017 Go to the issue