Skip to main content
Top

2023 | OriginalPaper | Chapter

Stage Prediction of Traffic Lights Using Machine Learning

Authors : Kevin Heckmann, Lena Elisa Schneegans, Robert Hoyer

Published in: Towards the New Normal in Mobility

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Motorized road traffic is the dominant source of greenhouse gas (GHG) emissions in the German and the pan-European transport sectors. Traffic jams and stops in front of traffic lights are causing avoidable increased emissions from motorized traffic. As various research has shown, the usage of Green Light Optimal Speed Advisory (GLOSA) systems promises to reduce the fuel consumption of motorized vehicles, with a corresponding reduction in GHG emissions in front of signalized intersections.Click or tap here to enter text.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Günther, D. & Gniffke, P. (2022). “Berechnung der Treibhausgasemissionsdaten für das Jahr 2021 gemäß Bundesklimaschutzgesetz Begleitender Bericht,” Umweltbundesamt, Dessau-Roßlau. Günther, D. & Gniffke, P. (2022). “Berechnung der Treibhausgasemissionsdaten für das Jahr 2021 gemäß Bundesklimaschutzgesetz Begleitender Bericht,” Umweltbundesamt, Dessau-Roßlau.
2.
go back to reference Eckhoff, D., Halmos, B., & German, R. (2013). Potentials and limitations of green light optimal speed advisory systems. 2013 IEEE Vehicular Networking Conference (pp. 103–110). Eckhoff, D., Halmos, B., & German, R. (2013). Potentials and limitations of green light optimal speed advisory systems. 2013 IEEE Vehicular Networking Conference (pp. 103–110).
3.
go back to reference Sharara, M., Ibrahim, M., & Chalhoub, G. (2019). Impact of network performance on GLOSA. 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 1–6). Sharara, M., Ibrahim, M., & Chalhoub, G. (2019). Impact of network performance on GLOSA. 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 1–6).
4.
go back to reference Marumo, Y., Yamazaki, K., Suzuki, H., & Michitsuji, Y (2015). Driver assistance system at signalized intersection by indicating predicted signal aspects on road. Proceedings of the 5th International Symposium on Future Active Safety Technology toward Zero Accidents. Marumo, Y., Yamazaki, K., Suzuki, H., & Michitsuji, Y (2015). Driver assistance system at signalized intersection by indicating predicted signal aspects on road. Proceedings of the 5th International Symposium on Future Active Safety Technology toward Zero Accidents.
5.
go back to reference Suramardhana, T. A., & Jeong, H.-Y. (2014). A driver-centric green light optimal speed advisory (DC-GLOSA) for improving road traffic congestion at urban intersections. 2014 IEEE Asia Pacific Conference on Wireless and Mobile (S. 304–309). Suramardhana, T. A., & Jeong, H.-Y. (2014). A driver-centric green light optimal speed advisory (DC-GLOSA) for improving road traffic congestion at urban intersections. 2014 IEEE Asia Pacific Conference on Wireless and Mobile (S. 304–309).
6.
go back to reference Fakler, O., Geßenhardt, J., Lüßmann, J., & Busch, F. (2014). Structures of traffic management and control in german cities. 10th ITS European Congress 2014, 16–19 June 2014. Fakler, O., Geßenhardt, J., Lüßmann, J., & Busch, F. (2014). Structures of traffic management and control in german cities. 10th ITS European Congress 2014, 16–19 June 2014.
7.
go back to reference Koukoumidis, E., Peh, L.-S., & Martonosi, M. (2011). SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory. Proceedings of the 9th international conference on Mobile systems, applications, and services (MobiSys ’11). Association for Computing Machinery (S. 127–140). Koukoumidis, E., Peh, L.-S., & Martonosi, M. (2011). SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory. Proceedings of the 9th international conference on Mobile systems, applications, and services (MobiSys ’11). Association for Computing Machinery (S. 127–140).
8.
go back to reference Krumnow, M., Pape, S., Kretschmer, A., & Krimmling, J. (2014). Schaltzeitprognose verkehrsabhängiger Lichtsignalanlagen im Rahmen des Forschungsprojektes EFA 2014/2. Aspekte der Verkehrstelematik-ausgewählte Veröffentlichungen 2014. Krumnow, M., Pape, S., Kretschmer, A., & Krimmling, J. (2014). Schaltzeitprognose verkehrsabhängiger Lichtsignalanlagen im Rahmen des Forschungsprojektes EFA 2014/2. Aspekte der Verkehrstelematik-ausgewählte Veröffentlichungen 2014.
9.
go back to reference Wang, C., & Jiang, S. (2012). Traffic signal phases’ estimation by floating car data. 12th International Conference on ITS Telecommunications (pp. 568–573). Wang, C., & Jiang, S. (2012). Traffic signal phases’ estimation by floating car data. 12th International Conference on ITS Telecommunications (pp. 568–573).
10.
go back to reference Protschky, V., Wiesner, K., & Feit, S. (2014). Adaptive traffic light prediction via Kalman filtering. IEEE Intelligent Vehicles Symposium Proceedings, 151–157. Protschky, V., Wiesner, K., & Feit, S. (2014). Adaptive traffic light prediction via Kalman filtering. IEEE Intelligent Vehicles Symposium Proceedings, 151–157.
12.
go back to reference Weisheit, T., & Hoyer, R. (2014). Prediction of Switching Times of Traffic Actuated Signal Controls Using Support Vector Machines. In J. Fischer-Wolfarth & G. Meyer (Ed.), Lecture Notes in Mobility, Advanced Microsystems for Automotive Applications (pp. 121–129). Springer.CrossRef Weisheit, T., & Hoyer, R. (2014). Prediction of Switching Times of Traffic Actuated Signal Controls Using Support Vector Machines. In J. Fischer-Wolfarth & G. Meyer (Ed.), Lecture Notes in Mobility, Advanced Microsystems for Automotive Applications (pp. 121–129). Springer.CrossRef
13.
go back to reference Genser, L., Ambuhl, L., Yang, K., Menendez, M., & Kouvelas, A. (2021). Enhancement of SPaT-messages with machine learning based time-to-green predictions. 9th Symposium of the European Association for Research in Transportation (hEART 2020), September 1–3, 2020, online, February 3–4. Genser, L., Ambuhl, L., Yang, K., Menendez, M., & Kouvelas, A. (2021). Enhancement of SPaT-messages with machine learning based time-to-green predictions. 9th Symposium of the European Association for Research in Transportation (hEART 2020), September 1–3, 2020, online, February 3–4.
14.
go back to reference Genser, L., Ambuhl, L., Yang, K., Menendez, M., & Kouvelas, A. (2020). Time-to-Green predictions: A framework to enhance SPaT messages using machine learning. (in English (US)), 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, (pp. 1–6). Genser, L., Ambuhl, L., Yang, K., Menendez, M., & Kouvelas, A. (2020). Time-to-Green predictions: A framework to enhance SPaT messages using machine learning. (in English (US)), 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, (pp. 1–6).
15.
go back to reference Kunashko, A., Xie, F., Naumann, S., Gao, Y., & Li, J. (2022). Application and comparison of machine learning algorithms in traffic signals prediction. Present Approach to Traffic Flow Theory and Research in Civil and Transportation Engineering (pp. 69–78). Kunashko, A., Xie, F., Naumann, S., Gao, Y., & Li, J. (2022). Application and comparison of machine learning algorithms in traffic signals prediction. Present Approach to Traffic Flow Theory and Research in Civil and Transportation Engineering (pp. 69–78).
16.
go back to reference Schneegans, L. E., Duensing, J., Heckmann, K., & Hoyer, R. (2022). Prediction of Signal Phase and Timing Information: Comparison of Machine Learning Algorithm Performance. mobilTUM 2022 5th-7th April 2022. manuscript in press. Schneegans, L. E., Duensing, J., Heckmann, K., & Hoyer, R. (2022). Prediction of Signal Phase and Timing Information: Comparison of Machine Learning Algorithm Performance. mobilTUM 2022 5th-7th April 2022. manuscript in press.
18.
go back to reference Menig, C., Hildebrandt, R., & Braun, R. (2008).Der informierte Fahrer – Optimierung des Verkehrsablaufs durch LSA-Fahrzeug-Kommunikation. HEUREKA ’08 – Optimierung in Verkehr und Transport (pp. 143–164). Menig, C., Hildebrandt, R., & Braun, R. (2008).Der informierte Fahrer – Optimierung des Verkehrsablaufs durch LSA-Fahrzeug-Kommunikation. HEUREKA ’08 – Optimierung in Verkehr und Transport (pp. 143–164).
19.
go back to reference Bodenheimer, R., Brauer, A., Eckhoff, D., & German, R. (2014). Enabling GLOSA for adaptive traffic lights. IEEE Vehicular Networking Conference (VNC), 167–174. Bodenheimer, R., Brauer, A., Eckhoff, D., & German, R. (2014). Enabling GLOSA for adaptive traffic lights. IEEE Vehicular Networking Conference (VNC), 167–174.
20.
go back to reference Bodenheimer, R. (2017). Entwicklung und Analyse eines Prognoseverfahrens für verkehrsadaptive Lichtsignalanlagen. Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg. Bodenheimer, R. (2017). Entwicklung und Analyse eines Prognoseverfahrens für verkehrsadaptive Lichtsignalanlagen. Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg.
21.
go back to reference Heckmann, K., Schneegans, L. E., & Hoyer, R. (2022). Estimating Future Signal States and Switching Times of Traffic Actuated Lights. Proceedings of the 20th European Transport Congress and 12th Conference on Transport Sciences, 9–10th June 2022, Győr, Hungary, 2022, pp. 80–91 Heckmann, K., Schneegans, L. E., & Hoyer, R. (2022). Estimating Future Signal States and Switching Times of Traffic Actuated Lights. Proceedings of the 20th European Transport Congress and 12th Conference on Transport Sciences, 9–10th June 2022, Győr, Hungary, 2022, pp. 80–91
22.
go back to reference City of Kassel (2019). Traffic light technical documentation: Tech. rep. City of Kassel – urban traffic and roads authority (Stadt Kassel – Straßenverkehrs und Tiefbauamt). City of Kassel (2019). Traffic light technical documentation: Tech. rep. City of Kassel – urban traffic and roads authority (Stadt Kassel – Straßenverkehrs und Tiefbauamt).
24.
go back to reference Schreiber, J. (2018). pomegranate: Fast and flexible probabilistic modeling in python. Journal of Machine Learning Research, 18(164), 1–6. Schreiber, J. (2018). pomegranate: Fast and flexible probabilistic modeling in python. Journal of Machine Learning Research, 18(164), 1–6.
Metadata
Title
Stage Prediction of Traffic Lights Using Machine Learning
Authors
Kevin Heckmann
Lena Elisa Schneegans
Robert Hoyer
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-658-39438-7_36

Premium Partner