Skip to main content
Top

2010 | OriginalPaper | Chapter

2. Standard Natural Deduction

Author : Dr. Andrzej Indrzejczak

Published in: Natural Deduction, Hybrid Systems and Modal Logics

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This Chapter is devoted to the description of standard systems of natural deduction (ND). After historical introduction in Section 2.1 we present some preliminary criteria which should be satisfied by any system of natural deduction. Sections 2.3 and 2.4 develop a systematization of existing systems based on two features: the kind of data used by a system and the format of proof setting. As a result we divide traditional ND systems into F- and S-systems (rules defined on formulae or sequents), and on L- and T-systems (linear or tree proofs). The division is not exhaustive as there may be systems operating on other types of items (e.g. labelled formulae – cf. Chapter 8) The main conclusion of this part is that almost all of the known variants of ND may be traced back to the independent works of Jaśkowski and Gentzen who started the investigation on non-axiomatic deductive systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This is why we do not treat sequent calculi and tableau systems as examples of natural deduction systems. In ordinary SC we have only cumulative proofs and introduction rules, in tableau systems only indirect proofs and elimination rules.
 
2
Note that Jaśkowski did not use ⊥, so it is present in the formulation of rules as a metalinguistic sign of inconsistency. Also the names of rules are not original; he just used on the level of realization names like: rule I, rule II, ֵֵ. Note that in general we do not use the original names of rules from described systems since several authors either use different notation for the same things or the same names for different things.
 
3
In rules of elimination like \((\rightarrow E)\) we will ocassionaly use traditional distinction between major premise which contains eliminated constant, and minor premise.
 
4
Jaśkowski formulated also ND system for propositional logic with quantifiers.
 
5
In fact, Gentzen defined antecedents of sequents rather as lists of formulae, so he needs also a rule of permutation and contraction for elements of antecedents.
 
6
This is, for example, a solution of Dyckhoff in [81] with H denoting hypotheses (assumptions) and F denoting facts, i.e. assumptions and formulae inferred from them.
 
7
Similar way of description is in Wójcicki [285], where every deductive system consists of axioms, H-rules (i.e. sequents) and G-rules (i.e. sequent rules).
 
8
Cf. e.g. an algorithm in Chapter 4.
 
9
Additionally Jaśkowski has used a prefix S (from supposition) in front of any assumption.
 
10
It must be said that Jaśkowski was not as lucky as Gentzen, whose contribution into development of proof methods is widely known. There are a lot of books and papers using some variant of ND in Jaśkowski format but crediting it to Fitch or to Gentzen.
 
11
This remark applies to practically oriented ND; in systems constructed for the needs of theoretical investigation other solution may work better, e.g. von Plato/Negri idea of generalized elimination rules in [193] leading to smooth proof of normalization.
 
12
In Chapter 4 we will introduce some drastic modification of ND leading to “flat” (no additional subderivations) proofs.
 
13
For simplicity we keep the same names as for suitable rules in the calculus, but note that “rules” from the level of realization correspond only partially to them; cf. Section 2.5.4.
 
14
The version from [158] differs in even more respects; e.g. there are no boxes, no specified inference rules for connectives, no [RED].
 
15
One may notice that in some ND systems without explicit use of S-lines, their effect is simulated by some meta-system devices, e.g. in Pollock’s [218] or in Gabbay [99], where “almost” KM system is used.
 
16
There is no risk of confusion with the notion concerning formulae in sequents so, in this book, we will call them shortly parameters in accordance with the terminology of Fitting.
 
17
Actually, the problems was to state properly the restriction for ∀ introduction, in the presence of \((\exists E)\); a detailed account of it can be found in Pelletier [204] and in Fine [87].
 
18
Here and then we follow the convention of Section 2.5, where two instructions for assumption introduction were signed by (a) and (b).
 
19
But it may be the same since the depth is measured not by the number of boxes in general but by the maximal number of nested boxes, and the eliminated box may not be a member of this maximal sequence.
 
Literature
[95]
go back to reference Fitting, M. 1996. First-order logic and automated theorem proving. Berlin; Springer. Fitting, M. 1996. First-order logic and automated theorem proving. Berlin; Springer.
[234]
go back to reference Rieger, L. 1967. Algebraic methods of mathematical logic. Prague: Academia. Rieger, L. 1967. Algebraic methods of mathematical logic. Prague: Academia.
[158]
go back to reference Kalish, D., and R. Montague. 1957. Remarks on descriptions and natural deduction. Archiv. für Mathematische Logik und Grundlagen Forschung 3: 50–64, 65–73.CrossRef Kalish, D., and R. Montague. 1957. Remarks on descriptions and natural deduction. Archiv. r Mathematische Logik und Grundlagen Forschung 3: 50–64, 65–73.CrossRef
[283]
go back to reference Woleński, J. 1985. Filozoficzna szkoła Lwowsko-Warszawska. Warszawa: PWN. Woleński, J. 1985. Filozoficzna szkoła Lwowsko-Warszawska. Warszawa: PWN.
[54]
go back to reference Borkowski, L., and J. Słupecki. 1958. A logical system based on rules and its applications in teaching mathematical logic. Studia Logica 7: 71–113.CrossRef Borkowski, L., and J. Słupecki. 1958. A logical system based on rules and its applications in teaching mathematical logic. Studia Logica 7: 71–113.CrossRef
[274]
go back to reference Thomason, R. 1970. Symbolic logic. New York: Macmillan. Thomason, R. 1970. Symbolic logic. New York: Macmillan.
[99]
go back to reference Gabbay, D. 1996. LDS-labelled deductive systems. Oxford: Clarendon Press. Gabbay, D. 1996. LDS-labelled deductive systems. Oxford: Clarendon Press.
[93]
go back to reference Fitting, M. 1983. Proof methods for modal and intuitionistic logics. Dordrecht; Rei-del. Fitting, M. 1983. Proof methods for modal and intuitionistic logics. Dordrecht; Rei-del.
[141]
go back to reference Indrzejczak, A. 1995. Dedukcja naturalna w logikach modalnych pierwszego rzȩdu. In Filozofia/Logika: Filozofia logiczna 1994, eds. J. Perzanowski, A. Pietruszczak, and C. Gorzka, 289–302, Wyd. Toruń: Uniwersytetu Mikołaja Kopernika. Indrzejczak, A. 1995. Dedukcja naturalna w logikach modalnych pierwszego rzȩdu. In Filozofia/Logika: Filozofia logiczna 1994, eds. J. Perzanowski, A. Pietruszczak, and C. Gorzka, 289–302, Wyd. Toruń: Uniwersytetu Mikołaja Kopernika.
[127]
go back to reference Herbrand, J. 1930. Recherches sur la theorie de la demonstration. In Travaux de la Societe des Sciences et des Lettres de Varsovie, Classe III, Sciences Mathematiques et Physiques, Warsovie, 1930. Herbrand, J. 1930. Recherches sur la theorie de la demonstration. In Travaux de la Societe des Sciences et des Lettres de Varsovie, Classe III, Sciences Mathematiques et Physiques, Warsovie, 1930.
[180]
go back to reference Łukasiewicz, J. 1951. Aristotle’s syllogistic from the standpoint of modern logic. Oxford: Clarendon Press. Łukasiewicz, J. 1951. Aristotle’s syllogistic from the standpoint of modern logic. Oxford: Clarendon Press.
[73]
go back to reference Corcoran, J. 1972. Aristotle’s natural deduction system. In Ancient logic and its modern interpretations, ed. J. Corcoran. Dordrecht: Reidel. Corcoran, J. 1972. Aristotle’s natural deduction system. In Ancient logic and its modern interpretations, ed. J. Corcoran. Dordrecht: Reidel.
[129]
go back to reference Hertz, P. 1929. Über Axiomensysteme für Beliebige Satzsysteme. Mathematische Annalen 101: 457–514.CrossRef Hertz, P. 1929. Über Axiomensysteme für Beliebige Satzsysteme. Mathematische Annalen 101: 457–514.CrossRef
[26]
go back to reference Ben-Sasson, E., and A. Widgerson. 2001. Short proofs are narrow – resolution made simple. Journal of the ACM 48(2): 149–169.CrossRef Ben-Sasson, E., and A. Widgerson. 2001. Short proofs are narrow – resolution made simple. Journal of the ACM 48(2): 149–169.CrossRef
[266]
go back to reference Suppes, P. 1957. Introduction to logic. Princeton: Van Nostrand. Suppes, P. 1957. Introduction to logic. Princeton: Van Nostrand.
[82]
go back to reference Ebbinghaus, H.D., J. Flum, and W. Thomas. 1984. Mathematical logic. Berlin: Springer. Ebbinghaus, H.D., J. Flum, and W. Thomas. 1984. Mathematical logic. Berlin: Springer.
[86]
go back to reference Feys, R., and J. Ladriere. 1955. Supplementary notes. In Recherches sur la deduction logique, french translation of Gentzen, Paris: Press Univ. de France. Feys, R., and J. Ladriere. 1955. Supplementary notes. In Recherches sur la deduction logique, french translation of Gentzen, Paris: Press Univ. de France.
[204]
go back to reference Pelletier, F.J. 1998. Automated natural deduction in THINKER. Studia Logica 60: 3–43.CrossRef Pelletier, F.J. 1998. Automated natural deduction in THINKER. Studia Logica 60: 3–43.CrossRef
[272]
go back to reference Tarski, A. 1930. Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. Monatschefte für Mathematik und Physik, 37: 361–404.CrossRef Tarski, A. 1930. Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. Monatschefte r Mathematik und Physik, 37: 361–404.CrossRef
[110]
go back to reference Gentzen, G. 1936. Die Widerspruchsfreiheit der Reinen Zahlentheorie. Mathematische Annalen 112: 493–565.CrossRef Gentzen, G. 1936. Die Widerspruchsfreiheit der Reinen Zahlentheorie. Mathematische Annalen 112: 493–565.CrossRef
[144]
go back to reference Indrzejczak, A. 1998. Jaśkowski and Gentzen approaches to natural deduction and related systems. In The Lvov-Warsw school and contemporary philosophy, eds. K. Kijania-Placek and J.Woleński, 253–264, Dordrecht: Kluwer. Indrzejczak, A. 1998. Jaśkowski and Gentzen approaches to natural deduction and related systems. In The Lvov-Warsw school and contemporary philosophy, eds. K. Kijania-Placek and J.Woleński, 253–264, Dordrecht: Kluwer.
[267]
go back to reference Suszko, R. 1948. W sprawie logiki bez aksjomatów. Kwartalnik Filozoficzny 17(3/4): 199–205. Suszko, R. 1948. W sprawie logiki bez aksjomatów. Kwartalnik Filozoficzny 17(3/4): 199–205.
[226]
go back to reference Quine W. Van O. 1950. Methods of logic. New York: Colt. Quine W. Van O. 1950. Methods of logic. New York: Colt.
[72]
go back to reference Copi, I.M. 1954. Symbolic logic, New York: The Macmillan Company. Copi, I.M. 1954. Symbolic logic, New York: The Macmillan Company.
[87]
go back to reference Fine, K. 1985. Reasoning with arbitrary objects. Oxford: Blackwell. Fine, K. 1985. Reasoning with arbitrary objects. Oxford: Blackwell.
[168]
go back to reference Krajicek, J. 1994. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic 59(1): 73–85.CrossRef Krajicek, J. 1994. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic 59(1): 73–85.CrossRef
[81]
go back to reference Dyckhoff, R. 1987. Implementing a simple proof assistant. In Proceedings of workshop on programming for logic teaching, eds. J. Derrick, and H.A. Lewis, 49–59. Dyckhoff, R. 1987. Implementing a simple proof assistant. In Proceedings of workshop on programming for logic teaching, eds. J. Derrick, and H.A. Lewis, 49–59.
[193]
go back to reference Negri, S., and J. von Plato. 2001. Structural proof theory, Cambridge: Cambridge University Press. Negri, S., and J. von Plato. 2001. Structural proof theory, Cambridge: Cambridge University Press.
[285]
go back to reference Wójcicki, R. Theory of logical calculi. Dordrecht: Kluwer. Wójcicki, R. Theory of logical calculi. Dordrecht: Kluwer.
[220]
go back to reference Prawitz, D. 1965. Natural deduction. Stockholm: Almqvist and Wiksell. Prawitz, D. 1965. Natural deduction. Stockholm: Almqvist and Wiksell.
[174]
go back to reference Lemmon, E.J. 1965. Beginning logic. London: Nelson. Lemmon, E.J. 1965. Beginning logic. London: Nelson.
[105]
go back to reference Garson, J.W. 2006. Modal logic for philosophers. Cambridge: Cambridge University Press. Garson, J.W. 2006. Modal logic for philosophers. Cambridge: Cambridge University Press.
[162]
go back to reference Kleene, S.C. 1952. Introduction to metamathematics. Amsterdam: North Holland. Kleene, S.C. 1952. Introduction to metamathematics. Amsterdam: North Holland.
[89]
go back to reference Fitch, F. 1952. Symbolic logic. New York: Ronald Press Co. Fitch, F. 1952. Symbolic logic. New York: Ronald Press Co.
[205]
go back to reference Pelletier, F.J. 1999. A brief history of natural deduction. History and Philosophy of Logic 20: 1–31.CrossRef Pelletier, F.J. 1999. A brief history of natural deduction. History and Philosophy of Logic 20: 1–31.CrossRef
[156]
go back to reference Jaśkowski, S. 1929. Teoria dedukcji oparta na dyrektywach założeniowych. In Ksiȩ ga Pamiatkowa I Polskiego Zjazdu Matematycznego. Kraków: Uniwersytet Jagielloņski. Jaśkowski, S. 1929. Teoria dedukcji oparta na dyrektywach założeniowych. In Ksiȩ ga Pamiatkowa I Polskiego Zjazdu Matematycznego. Kraków: Uniwersytet Jagielloņski.
[126]
go back to reference Herbrand, J. 1928. Abstract In Comptes Rendus des Seances de l’Academie des Sciences, vol. 186, 1275 Paris. Herbrand, J. 1928. Abstract In Comptes Rendus des Seances de l’Academie des Sciences, vol. 186, 1275 Paris.
[109]
go back to reference Gentzen, G. 1934. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift 39: 176–210, 405–431.CrossRef Gentzen, G. 1934. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift 39: 176–210, 405–431.CrossRef
[157]
go back to reference Jaśkowski, S. 1934. On the rules of suppositions in formal logic. Studia Logica 1: 5–32. Jaśkowski, S. 1934. On the rules of suppositions in formal logic. Studia Logica 1: 5–32.
[128]
go back to reference Hermes, H. 1963. Einführung in die Mathematische Logik. Stuttgart: Teubner. Hermes, H. 1963. Einführung in die Mathematische Logik. Stuttgart: Teubner.
[187]
go back to reference Mates, B. 1953. Stoic logic. Berkeley: University of California Press. Mates, B. 1953. Stoic logic. Berkeley: University of California Press.
[108]
go back to reference Gentzen, G. 1932. Über die Existenz Unabhängiger Axiomensysteme zu Unendlichen Satzsystemen. Mathematische Annalen 107: 329–350.CrossRef Gentzen, G. 1932. Über die Existenz Unabhängiger Axiomensysteme zu Unendlichen Satzsystemen. Mathematische Annalen 107: 329–350.CrossRef
[20]
go back to reference Barth, E.M., E.C. Krabbe. 1982. From Axiom to Dialogue. Berlin: Walter de Gruyter. Barth, E.M., E.C. Krabbe. 1982. From Axiom to Dialogue. Berlin: Walter de Gruyter.
[52]
go back to reference Bonevac, D. 1987. Deduction, Mountain View: Mayfield Press. Bonevac, D. 1987. Deduction, Mountain View: Mayfield Press.
[159]
go back to reference Kalish, D., and R. Montague. 1964. Logic, techniques of formal reasoning. New York: Harcourt, Brace and World. Kalish, D., and R. Montague. 1964. Logic, techniques of formal reasoning. New York: Harcourt, Brace and World.
Metadata
Title
Standard Natural Deduction
Author
Dr. Andrzej Indrzejczak
Copyright Year
2010
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-8785-0_2

Premium Partner