Skip to main content
Top

2022 | OriginalPaper | Chapter

9. State of Art on Microstructural and Mechanical Characterization of Wire and Arc Additive Manufacturing (WAAM)

Authors : Aman Verma, Himanshu Yadav, Kuldeep Kumar, Prince Kumar Singh, Mayank Sharma, Vishal Shankar Srivastava, Ashish Kumar Srivastava

Published in: Computational and Experimental Methods in Mechanical Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wire and arc additive manufacturing (WAAM) technology is quite impressive and investigated in the last 30 years of development. It fascinates the scientists and manufacturers as it can produce densely deposited metal parts, and the objects produced are almost similar to the desired one. It is a process that includes the deposition of material layer-by-layer. It is gaining importance at a very fast pace as manufacturing industries find it cost- and time-efficient. Here, in this review paper, the mechanism of WAAM techniques, its type, and various components produced by WAAM have been discussed. It also includes the discussion on different surface deposit properties and microstructural properties of the products produced by WAAM. At last, the industrial application and future scope of this technique are also explored.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Majid, S.N.A., Kalahari, M.R., Ramli, F.R., Maidin, S., Fai, T.C., Sudin, M.N.: Influence of integrated pressing during fused filament fabrication on tensile strength and porosity. J. Mech. Eng. 2, 185–195 (2017) Majid, S.N.A., Kalahari, M.R., Ramli, F.R., Maidin, S., Fai, T.C., Sudin, M.N.: Influence of integrated pressing during fused filament fabrication on tensile strength and porosity. J. Mech. Eng. 2, 185–195 (2017)
3.
go back to reference Sharma, V., Singh, S.: Rapid prototyping: process advantage, comparison and application. Int. J. Comput. Intell. Res. 12(1), 55–61 (2016) Sharma, V., Singh, S.: Rapid prototyping: process advantage, comparison and application. Int. J. Comput. Intell. Res. 12(1), 55–61 (2016)
4.
go back to reference Song, Y.-A., Park, S., Choi, D., Jee, H.: 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. Int. J. Mach. Tools Manuf. 45, 1057–1062 (2005)CrossRef Song, Y.-A., Park, S., Choi, D., Jee, H.: 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. Int. J. Mach. Tools Manuf. 45, 1057–1062 (2005)CrossRef
5.
go back to reference Srivastava, A.K., Kumar, N., Dixit, A.R.: Friction stir additive manufacturing—an innovative tool to enhance mechanical and microstructural properties. Mater. Sci. Eng. B 263, 114832 (2021) Srivastava, A.K., Kumar, N., Dixit, A.R.: Friction stir additive manufacturing—an innovative tool to enhance mechanical and microstructural properties. Mater. Sci. Eng. B 263, 114832 (2021)
6.
go back to reference Nazan, M.A., Ramli, F.R., Alkahari, M.R., Sudin, M.N., Abdullah, M.A.: Optimization of warping deformation in open source 3D printer using response surface method. Proc. Mech. Eng. Res. Day 71–72 (2016) Nazan, M.A., Ramli, F.R., Alkahari, M.R., Sudin, M.N., Abdullah, M.A.: Optimization of warping deformation in open source 3D printer using response surface method. Proc. Mech. Eng. Res. Day 71–72 (2016)
7.
go back to reference Srivastava, A.K., Gupta, Y., Patel, S., Tiwari, S.K., Pandey, S.: Metal matrix composites-a review on synthesis and characterization. IOP Conf. Ser. Mater. Sci. Eng. 691(1), 012077 (2019) Srivastava, A.K., Gupta, Y., Patel, S., Tiwari, S.K., Pandey, S.: Metal matrix composites-a review on synthesis and characterization. IOP Conf. Ser. Mater. Sci. Eng. 691(1), 012077 (2019)
8.
go back to reference Song, Y.-A., Park, S., Chae, S.-W.: 3D welding and milling: Part II—optimization of the 3D welding process using an experimental design approach. Int. J. Mach. Tools Manuf. 45, 1063–1069 (2005)CrossRef Song, Y.-A., Park, S., Chae, S.-W.: 3D welding and milling: Part II—optimization of the 3D welding process using an experimental design approach. Int. J. Mach. Tools Manuf. 45, 1063–1069 (2005)CrossRef
9.
go back to reference Katou, M., Oh, J., Miyamoto, Y., Matsuura, K., Kudoh, M.: Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding. Mater. Des. 28, 2093–2098 (2007)CrossRef Katou, M., Oh, J., Miyamoto, Y., Matsuura, K., Kudoh, M.: Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding. Mater. Des. 28, 2093–2098 (2007)CrossRef
11.
go back to reference Jandric, Z., Labudovic, M., Kovacevic, R.: Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition. Int. J. Mach. Tools Manuf. 44, 785–796 (2004)CrossRef Jandric, Z., Labudovic, M., Kovacevic, R.: Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition. Int. J. Mach. Tools Manuf. 44, 785–796 (2004)CrossRef
12.
go back to reference Kwak, Y.-M., Doumanidis, C.: Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding. J. Manuf. Process. 4, 28–41 (2002)CrossRef Kwak, Y.-M., Doumanidis, C.: Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding. J. Manuf. Process. 4, 28–41 (2002)CrossRef
13.
go back to reference Kozamernik, N., Bračun, D., Klobčar, D.: WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int. J. Adv. Manuf. Technol. 110, 1955–1968 (2020)CrossRef Kozamernik, N., Bračun, D., Klobčar, D.: WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int. J. Adv. Manuf. Technol. 110, 1955–1968 (2020)CrossRef
14.
go back to reference Nagamuthu, H., Sasahara, H., Mitsutake, Y., Hamamoto, T.: Development of a cooperative system for wire and arc additive manufacturing and machining. Addit. Manuf. 31, 100896 (2020) Nagamuthu, H., Sasahara, H., Mitsutake, Y., Hamamoto, T.: Development of a cooperative system for wire and arc additive manufacturing and machining. Addit. Manuf. 31, 100896 (2020)
15.
go back to reference International Standard ISO Metallic materials—Vickers hardness test—Part 1: Test method (ISO 6507–1: 2018) Int. Stand. 1–49 (2018) ISO 6507-1:2018 International Standard ISO Metallic materials—Vickers hardness test—Part 1: Test method (ISO 6507–1: 2018) Int. Stand. 1–49 (2018) ISO 6507-1:2018
16.
go back to reference Suryakumar, S., Karunakaran, K., Bernard, A., Chandrasekhar, U., Raghavender, N., Sharma, D.: Weld bead modeling and process optimization in hybrid layered manufacturing. Comput. Des. 43, 331–344 (2011) Suryakumar, S., Karunakaran, K., Bernard, A., Chandrasekhar, U., Raghavender, N., Sharma, D.: Weld bead modeling and process optimization in hybrid layered manufacturing. Comput. Des. 43, 331–344 (2011)
17.
go back to reference Gu, J., Gao, M., Yang, S., Bai, J., Zhai, Y., Ding, J.: Microstructure, defects, and mechanical properties of wire + arc additively manufactured AlCu4.3–Mg1.5 alloy. Mater. Des. 186,108357 (2020) Gu, J., Gao, M., Yang, S., Bai, J., Zhai, Y., Ding, J.: Microstructure, defects, and mechanical properties of wire + arc additively manufactured AlCu4.3–Mg1.5 alloy. Mater. Des. 186,108357 (2020)
18.
go back to reference Baufeld, B., Biest, O., Gault, R.: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Mater. Des. 31, 106–111 (2010)CrossRef Baufeld, B., Biest, O., Gault, R.: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Mater. Des. 31, 106–111 (2010)CrossRef
20.
go back to reference Ding, D., Pan, Z., Cuiuri, D., Li, H.: A tool-path generation strategy for wire and arc additive manufacturing. Int. J. Adv. Manuf. Technol. 73, 173–183 (2014)CrossRef Ding, D., Pan, Z., Cuiuri, D., Li, H.: A tool-path generation strategy for wire and arc additive manufacturing. Int. J. Adv. Manuf. Technol. 73, 173–183 (2014)CrossRef
21.
go back to reference Ding, D., Pan, Z., Cuiuri, D., Li, H.: A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot. Comput. Manuf. 34, 8–19 (2015)CrossRef Ding, D., Pan, Z., Cuiuri, D., Li, H.: A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot. Comput. Manuf. 34, 8–19 (2015)CrossRef
22.
go back to reference Ma, Y., Cuiuri, D., Li, H., Pan, Z., Shen, C.: The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process. Mater. Sci. Eng. A 657, 86–95 (2016)CrossRef Ma, Y., Cuiuri, D., Li, H., Pan, Z., Shen, C.: The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process. Mater. Sci. Eng. A 657, 86–95 (2016)CrossRef
23.
go back to reference Wang, L., Xue, J., Wang, Q.: Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater. Sci. Eng. A 751, 183–190 (2019)CrossRef Wang, L., Xue, J., Wang, Q.: Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater. Sci. Eng. A 751, 183–190 (2019)CrossRef
24.
go back to reference Caballero, A., Ding, J., Ganguly, S., Williams, S.: Wire + Arc Additive Manufacture of 17-4 PH stainless steel: effect of different processing conditions on microstructure, hardness, and tensile strength. J. Mater. Process. Technol. 268, 54–62 (2019)CrossRef Caballero, A., Ding, J., Ganguly, S., Williams, S.: Wire + Arc Additive Manufacture of 17-4 PH stainless steel: effect of different processing conditions on microstructure, hardness, and tensile strength. J. Mater. Process. Technol. 268, 54–62 (2019)CrossRef
25.
go back to reference Suryakumar, S., Karunakaran, K.P., Chandrasekhar, U., Somashekara, M.A.: A study of the mechanical properties of objects built through weld-deposition. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(8), 1138–1147 (2013) Suryakumar, S., Karunakaran, K.P., Chandrasekhar, U., Somashekara, M.A.: A study of the mechanical properties of objects built through weld-deposition. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(8), 1138–1147 (2013)
27.
go back to reference Nilsiam, Y., Sanders, P.: Pearce, Slicer and process improvements for open-source GMAW-based metal 3-D printing. Addit. Manuf. 18, 110–120 (2017) Nilsiam, Y., Sanders, P.: Pearce, Slicer and process improvements for open-source GMAW-based metal 3-D printing. Addit. Manuf. 18, 110–120 (2017)
28.
go back to reference Stützer, J., Totzauer, T., Wittig, B., Zinke, M., Jüttner, S.: GMAW cold wire technology for adjusting the ferrite-austenite ratio of wire and arc additive manufactured duplex stainless steel components. Metals 9, 564 (2019)CrossRef Stützer, J., Totzauer, T., Wittig, B., Zinke, M., Jüttner, S.: GMAW cold wire technology for adjusting the ferrite-austenite ratio of wire and arc additive manufactured duplex stainless steel components. Metals 9, 564 (2019)CrossRef
29.
go back to reference Li, F., Chen, S., Wu, Z., et al.: Adaptive process control of wire and arc additive manufacturing for fabricating complex-shaped components. Int. J. Adv. Manuf. Technol. 96, 871–879 (2018)CrossRef Li, F., Chen, S., Wu, Z., et al.: Adaptive process control of wire and arc additive manufacturing for fabricating complex-shaped components. Int. J. Adv. Manuf. Technol. 96, 871–879 (2018)CrossRef
30.
go back to reference Manogharan, G., Wysk, R.A., Ola, L.A.: Harrysson, Additive manufacturing–integrated hybrid manufacturing and subtractive processes: economic model and analysis. Int. J. Comput. Integr. Manuf. 29(5), 473–488 (2016) Manogharan, G., Wysk, R.A., Ola, L.A.: Harrysson, Additive manufacturing–integrated hybrid manufacturing and subtractive processes: economic model and analysis. Int. J. Comput. Integr. Manuf. 29(5), 473–488 (2016)
31.
go back to reference Dwivedi, R.: Kovacevic R Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J. Manuf. Syst. 23(4), 278–291 (2004)CrossRef Dwivedi, R.: Kovacevic R Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J. Manuf. Syst. 23(4), 278–291 (2004)CrossRef
34.
go back to reference Gu, J., Gao, M., Yang, S., Bai, J., Zhai, Y., Ding, J.: Microstructure, defects, and mechanical properties of wire + arc additively manufactured AlCu4.3-Mg1.5 alloy. Mater. Des. 186, 108357 (2020) Gu, J., Gao, M., Yang, S., Bai, J., Zhai, Y., Ding, J.: Microstructure, defects, and mechanical properties of wire + arc additively manufactured AlCu4.3-Mg1.5 alloy. Mater. Des. 186, 108357 (2020)
35.
go back to reference Martina, F., Colegrove, P.A., Williams, S.W., et al.: Microstructure of interpass rolled wire + Arc additive manufacturing Ti–6Al–4V components. Metall. Mater. Trans. A 46, 6103–6118 (2015)CrossRef Martina, F., Colegrove, P.A., Williams, S.W., et al.: Microstructure of interpass rolled wire + Arc additive manufacturing Ti–6Al–4V components. Metall. Mater. Trans. A 46, 6103–6118 (2015)CrossRef
37.
go back to reference Ding, D., Pan, Z., Coeur, D., Li, H.: A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot. Comput. Integr. Manuf. 34, 8–19 (2015) Ding, D., Pan, Z., Coeur, D., Li, H.: A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot. Comput. Integr. Manuf. 34, 8–19 (2015)
38.
go back to reference Gu, J., Gao, M., Yang, S., Bai, J., Zhai, Y., Ding, J.: Microstructure, defects, and mechanical properties of wire + arc additively manufactured Al Cu4.3–Mg1.5 alloy. Mater. Des. 186, 108357 (2020) Gu, J., Gao, M., Yang, S., Bai, J., Zhai, Y., Ding, J.: Microstructure, defects, and mechanical properties of wire + arc additively manufactured Al Cu4.3–Mg1.5 alloy. Mater. Des. 186, 108357 (2020)
39.
go back to reference Oliveira, J.P., Santos, T.G., Miranda, R.M.: Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog. Mater. Sci. 107, 100590 (2020) Oliveira, J.P., Santos, T.G., Miranda, R.M.: Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog. Mater. Sci. 107, 100590 (2020)
40.
go back to reference Wager, V., Lui, J., Tang, S., Fantasy, J., Joel, L., Liu, C.: Reducing porosity and refining grains for arc additive manufacturing aluminum alloy by adjusting arc pulse frequency and current. Mater. (Basel) 11(8), 1344 (2018) Wager, V., Lui, J., Tang, S., Fantasy, J., Joel, L., Liu, C.: Reducing porosity and refining grains for arc additive manufacturing aluminum alloy by adjusting arc pulse frequency and current. Mater. (Basel) 11(8), 1344 (2018)
42.
go back to reference Bai, J.Y., Yang, C.L., Lin, S.B., et al.: Mechanical properties of 2219-Al components produced by additive manufacturing with TIG. Int. J. Adv. Manuf. Technol. 86, 479–485 (2016)CrossRef Bai, J.Y., Yang, C.L., Lin, S.B., et al.: Mechanical properties of 2219-Al components produced by additive manufacturing with TIG. Int. J. Adv. Manuf. Technol. 86, 479–485 (2016)CrossRef
43.
go back to reference Wang, J.S., & Lee, P.D.: Simulating tortuous 3D morphology of microporosity formed during solidification of Al–Si–Cu alloys. Int. J. Cast Metals Res. 20(3), 151–158 (2007) Wang, J.S., & Lee, P.D.: Simulating tortuous 3D morphology of microporosity formed during solidification of Al–Si–Cu alloys. Int. J. Cast Metals Res. 20(3), 151–158 (2007)
44.
go back to reference Zhang, Y., Wu, L., Guo, X., et al.: Additive manufacturing of metallic materials. A Rev. J. Mater. Eng. Perform. 27, 1–13 (2018)CrossRef Zhang, Y., Wu, L., Guo, X., et al.: Additive manufacturing of metallic materials. A Rev. J. Mater. Eng. Perform. 27, 1–13 (2018)CrossRef
45.
go back to reference Sue, C., Chena, Z., Gaoyal, C., Wan, Y.: Effect of heat input on microstructure and mechanical properties of Mg–Al alloys fabricated by WAAM. Appl. Surf. Sci. 486, 431–440 (2019)CrossRef Sue, C., Chena, Z., Gaoyal, C., Wan, Y.: Effect of heat input on microstructure and mechanical properties of Mg–Al alloys fabricated by WAAM. Appl. Surf. Sci. 486, 431–440 (2019)CrossRef
46.
go back to reference Baei, J., Ding, J., Williams, S., Zhao, Y.: Deformation microstructures and strength mechanisms for the wire & arc additively manufactured Al–Mg–Mn alloy with inter-layer rolling. Mater. Sci. Eng. A 712, 292–301 (2018)CrossRef Baei, J., Ding, J., Williams, S., Zhao, Y.: Deformation microstructures and strength mechanisms for the wire & arc additively manufactured Al–Mg–Mn alloy with inter-layer rolling. Mater. Sci. Eng. A 712, 292–301 (2018)CrossRef
47.
go back to reference Zhao, H., Zhang, G., Yin, Z., Wu, L.: A 3d dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J. Mater. Process. Technol. 211(3), 488–495 (2011) Zhao, H., Zhang, G., Yin, Z., Wu, L.: A 3d dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J. Mater. Process. Technol. 211(3), 488–495 (2011)
48.
go back to reference Kramer, H.S., Starke, P., Klein, M., Eifler, D.: Cyclic hardness test Phybalcht—short-time procedure to evaluate fatigue properties of metallic materials. Int. J. Fatigue 63, 78–84 Kramer, H.S., Starke, P., Klein, M., Eifler, D.: Cyclic hardness test Phybalcht—short-time procedure to evaluate fatigue properties of metallic materials. Int. J. Fatigue 63, 78–84
49.
go back to reference Feng, Y., Zhan, B., He, J., Wang, K.: The double-wire feed and plasma arc additive manufacturing process for deposition in Cr–Ni stainless steel. J. Mater. Process. Technol. 259, 206–215 (2018)CrossRef Feng, Y., Zhan, B., He, J., Wang, K.: The double-wire feed and plasma arc additive manufacturing process for deposition in Cr–Ni stainless steel. J. Mater. Process. Technol. 259, 206–215 (2018)CrossRef
Metadata
Title
State of Art on Microstructural and Mechanical Characterization of Wire and Arc Additive Manufacturing (WAAM)
Authors
Aman Verma
Himanshu Yadav
Kuldeep Kumar
Prince Kumar Singh
Mayank Sharma
Vishal Shankar Srivastava
Ashish Kumar Srivastava
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2857-3_12

Premium Partners