Skip to main content
Top

2020 | OriginalPaper | Chapter

State-of-the-Art Advances and Perspectives for Electrocatalysis

Authors : Kabelo E. Ramohlola, Mpitloane J. Hato, Gobeng R. Monama, Edwin Makhado, Emmanuel I. Iwuoha, Kwena D. Modibane

Published in: Methods for Electrocatalysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrocatalysis stands as a heart for realization of hydrogen gas (H2) as a source of energy to replace conventional and traditional fossil fuel based energy. In this chapter, we present a comprehensive overview of the state-of-the-art molybdenum disulphide (MoS2) nanostructures for application in electrolytic hydrogen evolution reaction (HER). MoS2 is a crystalline compound consisting of Mo sandwiched between two sulfur atoms and can be identified in four poly-type structures, namely 1T, 1H, 2H and 3R. Firstly, the reaction accompanied with water splitting electrolysis, HER mechanisms as well as parameters to monitor HER reactions are discussed. Furthermore, the chapter describes different types of MoS2 poly-types, chemical synthetic routes and key approaches to activate inert S-containing basal plane of MoS2. This led to superior performance of new materials by combining the advantages of MoS2 components and others. Finally, future integration approaches which can be used to attain MoS2 with exposed edges and excellent electron transport channel are also outlined in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdolmaleki A, Mohamadi Z, Ensafi AA, Atashbar NZ, Rezaei B (2018) Efficient and stable HER electrocatalyst using Pt nanoparticles@ poly(3,4eethylene dioxythiophene) modified sulfonated graphene nanocomposite. Int J Hydrogen Energy 43:8323–8332CrossRef Abdolmaleki A, Mohamadi Z, Ensafi AA, Atashbar NZ, Rezaei B (2018) Efficient and stable HER electrocatalyst using Pt nanoparticles@ poly(3,4eethylene dioxythiophene) modified sulfonated graphene nanocomposite. Int J Hydrogen Energy 43:8323–8332CrossRef
2.
go back to reference Akbari E, Jahanbin K, Afroozeh A, Yupapin P, Buntat Z (2018) Brief review of monolayer molybdenum disulfide application in gas sensor. Phys B 545:510–518CrossRef Akbari E, Jahanbin K, Afroozeh A, Yupapin P, Buntat Z (2018) Brief review of monolayer molybdenum disulfide application in gas sensor. Phys B 545:510–518CrossRef
3.
go back to reference Appel AM, Helm ML (2014) Determining the overpotential for a molecular electrocatalyst. ACS Catal 4:630–633CrossRef Appel AM, Helm ML (2014) Determining the overpotential for a molecular electrocatalyst. ACS Catal 4:630–633CrossRef
4.
go back to reference Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2:1916–1923CrossRef Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2:1916–1923CrossRef
5.
go back to reference Benson J, Li M, Wang S, Wang P, Papakonstantinou P (2015) Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Interfaces 7:14113–14122CrossRef Benson J, Li M, Wang S, Wang P, Papakonstantinou P (2015) Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Interfaces 7:14113–14122CrossRef
6.
go back to reference Boiadjieva-Scherzer T, Kronberger H, Fafilek G, Monev M (2016) Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings. J Electroanal Chem 783:68–75CrossRef Boiadjieva-Scherzer T, Kronberger H, Fafilek G, Monev M (2016) Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings. J Electroanal Chem 783:68–75CrossRef
7.
go back to reference Cai Y, Yang X, Liang T, Dai L, Ma L, Huang G, Chen W, Chen H, Su H, Xu M (2014) Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high performance hydrogen evolution. Nanotechnology 25:465401 (1–6) Cai Y, Yang X, Liang T, Dai L, Ma L, Huang G, Chen W, Chen H, Su H, Xu M (2014) Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high performance hydrogen evolution. Nanotechnology 25:465401 (1–6)
9.
go back to reference Cao J, Zhou J, Zhang Y, Zou Y, Liu X (2017) MoS2 nanosheets direct support on reduced graphene oxide: an advanced electrocatalyst for hydrogen evolution reaction. PLoS ONE 12:e0177258CrossRef Cao J, Zhou J, Zhang Y, Zou Y, Liu X (2017) MoS2 nanosheets direct support on reduced graphene oxide: an advanced electrocatalyst for hydrogen evolution reaction. PLoS ONE 12:e0177258CrossRef
11.
go back to reference Chao J, Deng J, Zhou W, Liu J, Hu R, Yang L, Zhu M, Schmidt OG (2017) Hierarchical nanoflowers assembled from MoS2/polyaniline sandwiched nanosheets for high performance supercapacitor. Electrochim Acta 243:98–104CrossRef Chao J, Deng J, Zhou W, Liu J, Hu R, Yang L, Zhu M, Schmidt OG (2017) Hierarchical nanoflowers assembled from MoS2/polyaniline sandwiched nanosheets for high performance supercapacitor. Electrochim Acta 243:98–104CrossRef
12.
go back to reference Chaudhary N, Khanuja M, Islam ASS (2018) Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens Actuators A 277:190–198CrossRef Chaudhary N, Khanuja M, Islam ASS (2018) Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens Actuators A 277:190–198CrossRef
14.
go back to reference Cheng Y, Jiang SP (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci Mater Int 25:545–553CrossRef Cheng Y, Jiang SP (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci Mater Int 25:545–553CrossRef
15.
go back to reference Cheng CC, Lu AY, Tseng CC, Yang X, Hedhili MN, Cheng MC, Wei KH, Li LJ (2016) Activating basal-plane catalytic activity of two dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 30:846–852CrossRef Cheng CC, Lu AY, Tseng CC, Yang X, Hedhili MN, Cheng MC, Wei KH, Li LJ (2016) Activating basal-plane catalytic activity of two dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 30:846–852CrossRef
16.
go back to reference Choi JM, Kim SH, Lee SJ, Kim SS (2018) Effects of pressure and temperature in hydrothermal preparation of mos2 catalyst for methanation reaction. Catal Lett 148:1803–1814CrossRef Choi JM, Kim SH, Lee SJ, Kim SS (2018) Effects of pressure and temperature in hydrothermal preparation of mos2 catalyst for methanation reaction. Catal Lett 148:1803–1814CrossRef
17.
go back to reference Conte M, Di Mario F, Iacobazzi A, Mattucci A, Moreno A, Ronchetti M (2009) Hydrogen as future energy carrier: the ENEA point of view on technology and application prospects. Energies 2:150–179CrossRef Conte M, Di Mario F, Iacobazzi A, Mattucci A, Moreno A, Ronchetti M (2009) Hydrogen as future energy carrier: the ENEA point of view on technology and application prospects. Energies 2:150–179CrossRef
18.
go back to reference Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) Co-doped MoS2 nanosheets with dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 7:27242–27253CrossRef Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) Co-doped MoS2 nanosheets with dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 7:27242–27253CrossRef
19.
go back to reference Dai X, Du K, Li Z, Sun H, Yang Y, Zhang X, Li X, Wang H (2015) Highly efficient hydrogen evolution catalyst by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids. Chem Eng Sci 134:572–580CrossRef Dai X, Du K, Li Z, Sun H, Yang Y, Zhang X, Li X, Wang H (2015) Highly efficient hydrogen evolution catalyst by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids. Chem Eng Sci 134:572–580CrossRef
20.
go back to reference Dai X, Du K, Li Z, Sun H, Yang Y, Zhang W, Zhang X (2015) Enhanced hydrogen evolution reaction of few-layer MoS2 nanosheets-coated functionalized carbon nanotubes. Int J Hydrogen Energy 40:8877–8888CrossRef Dai X, Du K, Li Z, Sun H, Yang Y, Zhang W, Zhang X (2015) Enhanced hydrogen evolution reaction of few-layer MoS2 nanosheets-coated functionalized carbon nanotubes. Int J Hydrogen Energy 40:8877–8888CrossRef
21.
go back to reference Dai X, Li Z, Du K, Sun H, Yang Y, Zhang X, Ma X, Wang J (2015) Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction. Electrochim Acta 171:72–80CrossRef Dai X, Li Z, Du K, Sun H, Yang Y, Zhang X, Ma X, Wang J (2015) Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction. Electrochim Acta 171:72–80CrossRef
22.
go back to reference Dalla Corte DA, Torres C, Correa PS, Rieder ES, Malfatti CF (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrogen Energy 37:3025–3032CrossRef Dalla Corte DA, Torres C, Correa PS, Rieder ES, Malfatti CF (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrogen Energy 37:3025–3032CrossRef
23.
go back to reference Das S, Ghosh R, Routh P, Shit A, Mondal S, Panja A, Nandi AK (2018) Conductive MoS2 quatum dot/polyaniline aerogel for enhanced electrocatalytic hydrogen evolution and photoresponse properties. ACS Appl Nano Mater 1:2306–2316CrossRef Das S, Ghosh R, Routh P, Shit A, Mondal S, Panja A, Nandi AK (2018) Conductive MoS2 quatum dot/polyaniline aerogel for enhanced electrocatalytic hydrogen evolution and photoresponse properties. ACS Appl Nano Mater 1:2306–2316CrossRef
24.
go back to reference Delgado D, Minakshi M, Kim DJ (2015) Electrochemical impedance spectroscopy studies on hydrogen evolution from porous Raney cobalt in alkaline solution. Int J Electrochem Sci 10:9379–9394 Delgado D, Minakshi M, Kim DJ (2015) Electrochemical impedance spectroscopy studies on hydrogen evolution from porous Raney cobalt in alkaline solution. Int J Electrochem Sci 10:9379–9394
25.
go back to reference Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH (2019) Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 380:330–352CrossRef Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH (2019) Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 380:330–352CrossRef
27.
go back to reference Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 42:11053–11077CrossRef Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 42:11053–11077CrossRef
29.
go back to reference Guo X, Hou Y, Ren R, Chen J (2017) Temperature-dependent crystallization of MoS2 nanoflakes on graphene nanosheets for electrocatalysis. Nanoscale Res Lett 12:479–488CrossRef Guo X, Hou Y, Ren R, Chen J (2017) Temperature-dependent crystallization of MoS2 nanoflakes on graphene nanosheets for electrocatalysis. Nanoscale Res Lett 12:479–488CrossRef
30.
go back to reference Guo Y, Tang J, Qian H, Wang Z, Yamauchi Y (2017) One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem Mater 29:5566–5573CrossRef Guo Y, Tang J, Qian H, Wang Z, Yamauchi Y (2017) One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem Mater 29:5566–5573CrossRef
32.
go back to reference Gupta U, Rao CNR (2017) Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 41:49–65CrossRef Gupta U, Rao CNR (2017) Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 41:49–65CrossRef
34.
go back to reference Han X, Tong X, Liu X, Chen A, Wen X, Yang N, Guo XY (2018) Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal 8:1828–1836CrossRef Han X, Tong X, Liu X, Chen A, Wen X, Yang N, Guo XY (2018) Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal 8:1828–1836CrossRef
35.
go back to reference He Z, Que W (2016) Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl Mater Today 3:23–56CrossRef He Z, Que W (2016) Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl Mater Today 3:23–56CrossRef
36.
go back to reference Hellstern TR, Kibsgaard J, Tsai C, Palm DW, King LA, Abild-Pedersen F, Jaramillo TF (2017) Investigating catalyst–support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2– nanoclusters. ACS Catal 7:7126–7130CrossRef Hellstern TR, Kibsgaard J, Tsai C, Palm DW, King LA, Abild-Pedersen F, Jaramillo TF (2017) Investigating catalyst–support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2– nanoclusters. ACS Catal 7:7126–7130CrossRef
37.
go back to reference Hod I, Deria P, Bury W, Mondloch JE, Kung CW, So M, Sampson MD, Peters AW, Kubiak CP, Farha OK, Hupp JT (2015) A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 6:8304. https://doi.org/10.1038/ncomms9304 Hod I, Deria P, Bury W, Mondloch JE, Kung CW, So M, Sampson MD, Peters AW, Kubiak CP, Farha OK, Hupp JT (2015) A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 6:8304. https://​doi.​org/​10.​1038/​ncomms9304
38.
go back to reference Hong S, Sheng C, Krishnamoorthy A, Rajak P, Tiwari S, Nomura K, Misawa M, Shimojo F, Kalia RK, Nakano A, Vashishta P (2018) Chemical vapor deposition synthesis of MoS2 layers from the direct sulfidation of MoO3 surfaces using reactive molecular dynamics simulations. J Phys Chem C 122:7494–7503CrossRef Hong S, Sheng C, Krishnamoorthy A, Rajak P, Tiwari S, Nomura K, Misawa M, Shimojo F, Kalia RK, Nakano A, Vashishta P (2018) Chemical vapor deposition synthesis of MoS2 layers from the direct sulfidation of MoO3 surfaces using reactive molecular dynamics simulations. J Phys Chem C 122:7494–7503CrossRef
39.
go back to reference Hyun CM, Choi JH, Lee SW, Park JH, Lee KT, Ahn JH (2018) Synthesis mechanism of MoS2 layered crystals by chemical vapour deposition using MoO3 and sulfur powders. J Alloy Compd 765:380–384CrossRef Hyun CM, Choi JH, Lee SW, Park JH, Lee KT, Ahn JH (2018) Synthesis mechanism of MoS2 layered crystals by chemical vapour deposition using MoO3 and sulfur powders. J Alloy Compd 765:380–384CrossRef
40.
go back to reference Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—a review. J Power Sources 400:31–68CrossRef Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—a review. J Power Sources 400:31–68CrossRef
41.
go back to reference Karikalan N, Sundaresan P, Chen SM, Karthik R, Karuppiah C (2019) Cobalt molybdenum sulfide decorated with highly conductive sulfur-doped carbon as an electrocatalyst for the enhanced activity of hydrogen evolution reaction. Int J Hydrogen Energy 44:9164–9173CrossRef Karikalan N, Sundaresan P, Chen SM, Karthik R, Karuppiah C (2019) Cobalt molybdenum sulfide decorated with highly conductive sulfur-doped carbon as an electrocatalyst for the enhanced activity of hydrogen evolution reaction. Int J Hydrogen Energy 44:9164–9173CrossRef
42.
go back to reference Kaur R, Kaur A, Umar A, Anderson WA, Kansal SK (2019) Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Mater Res Bull 109:124–133CrossRef Kaur R, Kaur A, Umar A, Anderson WA, Kansal SK (2019) Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Mater Res Bull 109:124–133CrossRef
44.
go back to reference Khan M, Yousaf AB, Chen M, Wei C, Wu X, Huang N, Qi Z, Li L (2016) Molybdenum sulphide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res 9:837–848CrossRef Khan M, Yousaf AB, Chen M, Wei C, Wu X, Huang N, Qi Z, Li L (2016) Molybdenum sulphide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res 9:837–848CrossRef
45.
go back to reference Kong Q, Wang X, Tang A, Duan W, Liu B (2016) Three-dimensional hierarchical MoS2 nanosheet arrays/carbon cloth as flexible electrodes for high-performance hydrogen evolution reaction. Mater Lett 177:139–142CrossRef Kong Q, Wang X, Tang A, Duan W, Liu B (2016) Three-dimensional hierarchical MoS2 nanosheet arrays/carbon cloth as flexible electrodes for high-performance hydrogen evolution reaction. Mater Lett 177:139–142CrossRef
46.
go back to reference Krishnan U, Kaur M, Singh K, Kumar M, Kumar A (2019) A synoptic review of MoS2: synthesis to applications. Superlattices Microstruct 128:274–297CrossRef Krishnan U, Kaur M, Singh K, Kumar M, Kumar A (2019) A synoptic review of MoS2: synthesis to applications. Superlattices Microstruct 128:274–297CrossRef
47.
go back to reference Lei J, Jiang Z, Lu X, Nie G, Wang C (2015) Synthesis of few-layer MoS2 nanosheets-wrapped polyaniline hierarchical nanostructures for enhanced electrochemical capacitance performance. Electrochim Acta 176:149–155CrossRef Lei J, Jiang Z, Lu X, Nie G, Wang C (2015) Synthesis of few-layer MoS2 nanosheets-wrapped polyaniline hierarchical nanostructures for enhanced electrochemical capacitance performance. Electrochim Acta 176:149–155CrossRef
48.
go back to reference Li Y, He B, Liu X, Hu X, Huang J, Ye S, Shu Z, Wang Y, Li Z (2019) Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. Int J Hydrogen Energy 44:8070–8078CrossRef Li Y, He B, Liu X, Hu X, Huang J, Ye S, Shu Z, Wang Y, Li Z (2019) Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. Int J Hydrogen Energy 44:8070–8078CrossRef
49.
go back to reference Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Shao L, Hou L (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 9:28394–28405CrossRef Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Shao L, Hou L (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 9:28394–28405CrossRef
50.
go back to reference Li H, Tsai C, Koh AL, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Nørskov JK, Zheng X (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through formation of strained sulphur vacancies. Nat Mater 15:48–53CrossRef Li H, Tsai C, Koh AL, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Nørskov JK, Zheng X (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through formation of strained sulphur vacancies. Nat Mater 15:48–53CrossRef
51.
go back to reference Li Y, Wang H, Wang R, He B, Gong Y (2018) 3D self-supported Fe-O-P film on nickel foam as a highly active bifunctional electrocatalyst for urea-assisted overall water splitting. Mater Res Bull 100:72–75CrossRef Li Y, Wang H, Wang R, He B, Gong Y (2018) 3D self-supported Fe-O-P film on nickel foam as a highly active bifunctional electrocatalyst for urea-assisted overall water splitting. Mater Res Bull 100:72–75CrossRef
52.
go back to reference Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
53.
go back to reference Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou W (2017) Nitrogen doped MoS2 nanosheets via low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139CrossRef Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou W (2017) Nitrogen doped MoS2 nanosheets via low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139CrossRef
54.
go back to reference Li F, Zhang L, Li J, Lin X, Li X, Fang Y, Huang J, Li W, Tian M, Jin J, Li R (2015) Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22CrossRef Li F, Zhang L, Li J, Lin X, Li X, Fang Y, Huang J, Li W, Tian M, Jin J, Li R (2015) Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22CrossRef
55.
go back to reference Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiomics 1:33–44CrossRef Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiomics 1:33–44CrossRef
57.
go back to reference Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS2 intercalation composite for supercapacitor electrodes. Ceram Int 43:9877–9883CrossRef Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS2 intercalation composite for supercapacitor electrodes. Ceram Int 43:9877–9883CrossRef
58.
go back to reference Liu Y, Ghimire P, Jaroniec M (2019) Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. J Colloid Interface Sci 535:122–132CrossRef Liu Y, Ghimire P, Jaroniec M (2019) Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. J Colloid Interface Sci 535:122–132CrossRef
59.
go back to reference Liu YR, Hu WH, Li X, Dong B, Shang X, Han GQ, Chai YM, Liu YQ, Liu CG (2016) Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 384:51–57CrossRef Liu YR, Hu WH, Li X, Dong B, Shang X, Han GQ, Chai YM, Liu YQ, Liu CG (2016) Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 384:51–57CrossRef
60.
go back to reference Liu YR, Shang X, Gao WK, Dong B, Chi JQ, Li X, Yan KL, Chai YM, Liu YQ, Liu CG (2017) Ternary CoS2/MoS2/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution. Appl Surf Sci 412:138–145CrossRef Liu YR, Shang X, Gao WK, Dong B, Chi JQ, Li X, Yan KL, Chai YM, Liu YQ, Liu CG (2017) Ternary CoS2/MoS2/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution. Appl Surf Sci 412:138–145CrossRef
61.
go back to reference Liu N, Yang L, Wang S, Zhong Z, He S, Yang X, Gao Q, Tang Y (2015) Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. J Power Sources 275:588–594CrossRef Liu N, Yang L, Wang S, Zhong Z, He S, Yang X, Gao Q, Tang Y (2015) Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. J Power Sources 275:588–594CrossRef
62.
go back to reference Liu H, Zhang F, Li W, Zhang X, Lee CS, Wang W, Tang Y (2015) Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes. Electrochim Acta 167:132–138CrossRef Liu H, Zhang F, Li W, Zhang X, Lee CS, Wang W, Tang Y (2015) Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes. Electrochim Acta 167:132–138CrossRef
63.
go back to reference Liu Q, Wu Z, Ma Z, Dou S, Wu J, Tao L, Wang X, Ouyang C, Shen A, Wang S (2015b) One-pot synthesis of nitrogen and sulphur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. Electrochim Acta 177:298–303 Liu Q, Wu Z, Ma Z, Dou S, Wu J, Tao L, Wang X, Ouyang C, Shen A, Wang S (2015b) One-pot synthesis of nitrogen and sulphur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. Electrochim Acta 177:298–303
65.
go back to reference Lu X, Liu Y, Dong H, Dai W, Chen X, Qu X, Zhang X (2017) One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci Rep 7:42309. https://doi.org/10.1038/srep42309 Lu X, Liu Y, Dong H, Dai W, Chen X, Qu X, Zhang X (2017) One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci Rep 7:42309. https://​doi.​org/​10.​1038/​srep42309
66.
go back to reference Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRef Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRef
68.
69.
go back to reference Lyon YA, Roberts AA, McMillin DR (2015) Exploring hydrogen evolution and the overpotential. J Chem Educ 92:2130–2133CrossRef Lyon YA, Roberts AA, McMillin DR (2015) Exploring hydrogen evolution and the overpotential. J Chem Educ 92:2130–2133CrossRef
70.
go back to reference Ma B, Chen TT, Li QY, Qin HY, Dong XY, Zang SQ (2019) Bimetallic-organic-framework derived nanohybrid Cu0.9Co2.1.S4@MoS2 for highly performance visible-light-catalytic hydrogen evolution. Materials 2:1134–1148 Ma B, Chen TT, Li QY, Qin HY, Dong XY, Zang SQ (2019) Bimetallic-organic-framework derived nanohybrid Cu0.9Co2.1.S4@MoS2 for highly performance visible-light-catalytic hydrogen evolution. Materials 2:1134–1148
71.
go back to reference Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang J (2014) MoS2 nanoflower-decorated reduced graphene paper for high performance hydrogen evolution reaction. Nanoscale 6:5624–5629CrossRef Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang J (2014) MoS2 nanoflower-decorated reduced graphene paper for high performance hydrogen evolution reaction. Nanoscale 6:5624–5629CrossRef
72.
go back to reference Ma L, Ye J, Chen W, Chen D, Lee JM (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152CrossRef Ma L, Ye J, Chen W, Chen D, Lee JM (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152CrossRef
73.
go back to reference Mahale NK, Ingle S (2017) Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy 119:872–878CrossRef Mahale NK, Ingle S (2017) Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy 119:872–878CrossRef
74.
go back to reference Mashao G, Ramohlola KE, Mdluli SB, Monama GR, Hato MJ, Makgopa K, Molapo KM, Ramoroka ME, Iwuoha EI, Modibane KD (2019) Zinc-based zeolitic benzimidazolate framework/polyaniline nanocomposite for electrochemical sensing of hydrogen gas. Mater Chem Phys 230:287–298CrossRef Mashao G, Ramohlola KE, Mdluli SB, Monama GR, Hato MJ, Makgopa K, Molapo KM, Ramoroka ME, Iwuoha EI, Modibane KD (2019) Zinc-based zeolitic benzimidazolate framework/polyaniline nanocomposite for electrochemical sensing of hydrogen gas. Mater Chem Phys 230:287–298CrossRef
75.
go back to reference Mdleleni MM, Hyeon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulphide. J Am Chem Soc 120:6189–6190CrossRef Mdleleni MM, Hyeon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulphide. J Am Chem Soc 120:6189–6190CrossRef
76.
go back to reference Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156CrossRef Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156CrossRef
77.
go back to reference Monama GR, Mdluli SB, Mashao G, Makhafola MD, Ramohlola KE, Molapo KM, Hato MJ, Makgopa K, Iwuoha EI, Modibane KD (2018) Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew Energy 119:62–72CrossRef Monama GR, Mdluli SB, Mashao G, Makhafola MD, Ramohlola KE, Molapo KM, Hato MJ, Makgopa K, Iwuoha EI, Modibane KD (2018) Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew Energy 119:62–72CrossRef
79.
go back to reference Murthy AP, Theerthagiri J, Madhavan J (2018) Insights on Tafel constant in the analysis of hydrogen evolution reaction. J Phys Chem C 122:23943–23949CrossRef Murthy AP, Theerthagiri J, Madhavan J (2018) Insights on Tafel constant in the analysis of hydrogen evolution reaction. J Phys Chem C 122:23943–23949CrossRef
80.
go back to reference Noto V, Negro E, Vezzù K, Bertasi F, Nawn G (2015) Origins, developments, and perspectives of carbon nitride-based electrocatalysts for application in low-temperature FCs. Electrochem Soc Interface 24:59–62 Noto V, Negro E, Vezzù K, Bertasi F, Nawn G (2015) Origins, developments, and perspectives of carbon nitride-based electrocatalysts for application in low-temperature FCs. Electrochem Soc Interface 24:59–62
81.
go back to reference Ouyang C, Feng S, Huo J, Wang S (2017) Three-dimensional hierarchical MoS2/CoS2 heterostructure arrays for highly efficient electrocatalytic hydrogen evolution. Green Energy Environ 2:134–141CrossRef Ouyang C, Feng S, Huo J, Wang S (2017) Three-dimensional hierarchical MoS2/CoS2 heterostructure arrays for highly efficient electrocatalytic hydrogen evolution. Green Energy Environ 2:134–141CrossRef
82.
go back to reference Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396CrossRef Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396CrossRef
83.
go back to reference Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19:140–145CrossRef Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19:140–145CrossRef
84.
go back to reference Pu Z, Wei S, Chen Z, Mu S (2016) 3D flexible hydrogen evolution electrodes with Se promoted molybdenum sulfide nanosheet arrays. RSC Adv 6:11077–11080CrossRef Pu Z, Wei S, Chen Z, Mu S (2016) 3D flexible hydrogen evolution electrodes with Se promoted molybdenum sulfide nanosheet arrays. RSC Adv 6:11077–11080CrossRef
85.
go back to reference Pukazhselvan D, Kumar V, Singh SK (2012) High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1:566–589CrossRef Pukazhselvan D, Kumar V, Singh SK (2012) High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1:566–589CrossRef
86.
go back to reference Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen evolution reaction of metal organic frameworks decorated with poly (3-aminobenzoic acid). Electrochim Acta 246:1174–1182CrossRef Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen evolution reaction of metal organic frameworks decorated with poly (3-aminobenzoic acid). Electrochim Acta 246:1174–1182CrossRef
87.
go back to reference Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen production properties of poly(3-aminobenzoic acid) doped with metal organic frameworks. Int J Electrochem Sci 12:4392–4405CrossRef Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen production properties of poly(3-aminobenzoic acid) doped with metal organic frameworks. Int J Electrochem Sci 12:4392–4405CrossRef
88.
go back to reference Ramohlola KE, Monana GR, Hato MJ, Modibane KD, Molapo KM, Masikini M, Mduli SB, Iwuoha EI (2018) Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos B 137:129–139CrossRef Ramohlola KE, Monana GR, Hato MJ, Modibane KD, Molapo KM, Masikini M, Mduli SB, Iwuoha EI (2018) Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos B 137:129–139CrossRef
89.
go back to reference Ruiz KH, Liu J, Tu R, Li M, Zhang S, Garcia JRV, Mu S, Li H, Goto T, Zhang L (2018) Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. J Alloy Compd 747:100–108CrossRef Ruiz KH, Liu J, Tu R, Li M, Zhang S, Garcia JRV, Mu S, Li H, Goto T, Zhang L (2018) Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. J Alloy Compd 747:100–108CrossRef
90.
go back to reference Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35CrossRef Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35CrossRef
91.
go back to reference Sarker S, Chaturvedi P, Yan L, Nakotte T, Chen X, Richins SK, Das S, Peters J, Zhou M, Smirnov SN, Luo H (2018) Synergistic effect of iron diselenide decorated multi-walled carbon nanotubes for enhanced heterogeneous electron transfer and electrochemical hydrogen evolution. Electrochim Acta 270:138–146CrossRef Sarker S, Chaturvedi P, Yan L, Nakotte T, Chen X, Richins SK, Das S, Peters J, Zhou M, Smirnov SN, Luo H (2018) Synergistic effect of iron diselenide decorated multi-walled carbon nanotubes for enhanced heterogeneous electron transfer and electrochemical hydrogen evolution. Electrochim Acta 270:138–146CrossRef
92.
go back to reference Shen X, Xia X, Ye W, Du Y, Wang C (2017) Hexagram-like CoS-MoS2 composites with enhanced activity for hydrogen evolution reaction. J Solid State Electrochem 21:409–417CrossRef Shen X, Xia X, Ye W, Du Y, Wang C (2017) Hexagram-like CoS-MoS2 composites with enhanced activity for hydrogen evolution reaction. J Solid State Electrochem 21:409–417CrossRef
93.
go back to reference Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY (2017) Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc 139:15479–15485CrossRef Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY (2017) Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc 139:15479–15485CrossRef
95.
go back to reference Singh AK, Kumar P, Late DJ, Kumar A, Patel S, Singh J (2018) 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl Mater Today 13:242–270CrossRef Singh AK, Kumar P, Late DJ, Kumar A, Patel S, Singh J (2018) 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl Mater Today 13:242–270CrossRef
96.
go back to reference Singh A, Moun M, Singh R (2019) Effect of different precursors on CVD growth of molybdenum disulfide. J Alloy Compd 782:772–779CrossRef Singh A, Moun M, Singh R (2019) Effect of different precursors on CVD growth of molybdenum disulfide. J Alloy Compd 782:772–779CrossRef
97.
go back to reference Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36CrossRef Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36CrossRef
98.
go back to reference Su W, Wang P, Cai Z, Yang J, Wang X (2019) One-pot hydrothermal synthesis of Al-doped MoS2@graphene aerogel nanocomposite electrocatalysts for enhanced hydrogen evolution reaction. Results Phys 12:250–258CrossRef Su W, Wang P, Cai Z, Yang J, Wang X (2019) One-pot hydrothermal synthesis of Al-doped MoS2@graphene aerogel nanocomposite electrocatalysts for enhanced hydrogen evolution reaction. Results Phys 12:250–258CrossRef
99.
go back to reference Su C, Xiang J, Wen F, Song L, Mu C, Xu D, Hao C, Liu Z (2016) Microwave synthesized three-dimensional hierarchical nanostructure CoS2/MoS2 growth on carbon fiber cloth: a bifunctional electrode for hydrogen evolution and supercapacitor. Electrochim Acta 212:941–949CrossRef Su C, Xiang J, Wen F, Song L, Mu C, Xu D, Hao C, Liu Z (2016) Microwave synthesized three-dimensional hierarchical nanostructure CoS2/MoS2 growth on carbon fiber cloth: a bifunctional electrode for hydrogen evolution and supercapacitor. Electrochim Acta 212:941–949CrossRef
100.
go back to reference Sultana UK, O’Mullane AP (2018) Electrochemical formation of amorphous molybdenum phosphosulfide for enabling the hydrogen evolution reaction in alkaline and acidic media. ACS Appl Energy Mater 1:2849–2858CrossRef Sultana UK, O’Mullane AP (2018) Electrochemical formation of amorphous molybdenum phosphosulfide for enabling the hydrogen evolution reaction in alkaline and acidic media. ACS Appl Energy Mater 1:2849–2858CrossRef
101.
go back to reference Sun W, Li X, Shi J, Sun H, Tao Z, Li F, Chen J (2017) Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res 10:2210–2222CrossRef Sun W, Li X, Shi J, Sun H, Tao Z, Li F, Chen J (2017) Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res 10:2210–2222CrossRef
102.
go back to reference Sun T, Wang J, Chi X, Lin X, Chen Z, Ling X, Qiu L, Xu Y, Song L, Chen W, Su C (2018) Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal 8:7585–7592CrossRef Sun T, Wang J, Chi X, Lin X, Chen Z, Ling X, Qiu L, Xu Y, Song L, Chen W, Su C (2018) Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal 8:7585–7592CrossRef
103.
go back to reference Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157CrossRef Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157CrossRef
104.
go back to reference Tahira A, Ibupoto ZH, Mazzaro R, You S, Morandi V, Natile MM, Vagin M, Vomiero A (2019) Advanced electrocatalysts for hydrogen evolution reaction based on core−shell MoS2/TiO2 nanostructures in acidic and alkaline media. ACS Appl Energy Mater 2:2053–2062CrossRef Tahira A, Ibupoto ZH, Mazzaro R, You S, Morandi V, Natile MM, Vagin M, Vomiero A (2019) Advanced electrocatalysts for hydrogen evolution reaction based on core−shell MoS2/TiO2 nanostructures in acidic and alkaline media. ACS Appl Energy Mater 2:2053–2062CrossRef
106.
go back to reference Tan C, Cao X, Wu XJ, He H, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331CrossRef Tan C, Cao X, Wu XJ, He H, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331CrossRef
107.
go back to reference Tang Q, Jiang D (2015) Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem Mater 27:3743–3748CrossRef Tang Q, Jiang D (2015) Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem Mater 27:3743–3748CrossRef
108.
go back to reference Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-Mayouf AM (2017) Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 42:13020–13030CrossRef Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-Mayouf AM (2017) Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 42:13020–13030CrossRef
110.
go back to reference Tong T, Li Q, Li W, Ma W, Su B, Bo L (2017) MoS2 thin sheet growing on nitrogen self-doped mesoporous graphic carbon derived from ZIF-8 with highly electrocatalytic performance on hydrogen evolution reaction. ACS Sustain Chem Eng 5:10240–10247CrossRef Tong T, Li Q, Li W, Ma W, Su B, Bo L (2017) MoS2 thin sheet growing on nitrogen self-doped mesoporous graphic carbon derived from ZIF-8 with highly electrocatalytic performance on hydrogen evolution reaction. ACS Sustain Chem Eng 5:10240–10247CrossRef
111.
go back to reference Tong SS, Wang XJ, Li QC, Han XJ (2016) Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chin J Anal Chem 44:1447–1457CrossRef Tong SS, Wang XJ, Li QC, Han XJ (2016) Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chin J Anal Chem 44:1447–1457CrossRef
112.
go back to reference Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. I. J Electroanal Chem Interfacial Electrochem 81:97–111CrossRef Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. I. J Electroanal Chem Interfacial Electrochem 81:97–111CrossRef
113.
go back to reference Tsai C, Abild-Pedersen F, Nørskov JK (2014) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387CrossRef Tsai C, Abild-Pedersen F, Nørskov JK (2014) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387CrossRef
114.
go back to reference Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf Sci 640:133–140CrossRef Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf Sci 640:133–140CrossRef
115.
116.
go back to reference Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRef Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRef
118.
go back to reference Wang Y, Lia X, Wang C (2017) Synthesis and characterization of MoS2 nanocomposites by a high pressure hydrothermal method. J Non-Oxide Glasses 9:47–54 Wang Y, Lia X, Wang C (2017) Synthesis and characterization of MoS2 nanocomposites by a high pressure hydrothermal method. J Non-Oxide Glasses 9:47–54
119.
go back to reference Wang D, Pan Z, Wu Z, Wang Z, Liu Z (2014) Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. J Power Sources 264:229–234CrossRef Wang D, Pan Z, Wu Z, Wang Z, Liu Z (2014) Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. J Power Sources 264:229–234CrossRef
120.
go back to reference Wang G, Parrondo J, He C, Li Y, Ramani V (2017) Pt/C/Ni(OH)2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions. J Electrochem Soc 164:F1307–F1315CrossRef Wang G, Parrondo J, He C, Li Y, Ramani V (2017) Pt/C/Ni(OH)2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions. J Electrochem Soc 164:F1307–F1315CrossRef
121.
go back to reference Wang C, Su Y, Zhao X, Tong S, Han X (2018) MoS2@HKUST-1 flower-like nanohybrids for efficient hydrogen evolution reactions. Chem A Eur J 24:1080–1087CrossRef Wang C, Su Y, Zhao X, Tong S, Han X (2018) MoS2@HKUST-1 flower-like nanohybrids for efficient hydrogen evolution reactions. Chem A Eur J 24:1080–1087CrossRef
122.
go back to reference Wang D, Xie Y, Wu Z (2019) Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology 30:205401–205407CrossRef Wang D, Xie Y, Wu Z (2019) Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology 30:205401–205407CrossRef
123.
go back to reference Wang W, Zhang K, Qiao Z, Li L, Liu P, Yang Y (2014) Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-methylphenol. Ind Eng Chem Res 53:10301–10309CrossRef Wang W, Zhang K, Qiao Z, Li L, Liu P, Yang Y (2014) Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-methylphenol. Ind Eng Chem Res 53:10301–10309CrossRef
125.
go back to reference Wen Y, Zhu H, Zhang L, Zhang S, Zhang M, Du M (2019) Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Mater Res Bull 112:46–52CrossRef Wen Y, Zhu H, Zhang L, Zhang S, Zhang M, Du M (2019) Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Mater Res Bull 112:46–52CrossRef
126.
go back to reference Wu L, Xu X, Zhao Y, Zhang K, Sun Y, Wang T, Wang Y, Zhong W, Du Y (2017) Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl Surf Sci 425:470–477CrossRef Wu L, Xu X, Zhao Y, Zhang K, Sun Y, Wang T, Wang Y, Zhong W, Du Y (2017) Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl Surf Sci 425:470–477CrossRef
127.
go back to reference Wu Z, Zou Z, Huang J, Gao F (2018) Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal 358:243–252CrossRef Wu Z, Zou Z, Huang J, Gao F (2018) Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal 358:243–252CrossRef
129.
go back to reference Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 19:1386–1387CrossRef Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 19:1386–1387CrossRef
130.
go back to reference Xiang ZC, Zhang Z, Xu XJ, Zhang Q, Yuan C (2016) MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon 98:84–89CrossRef Xiang ZC, Zhang Z, Xu XJ, Zhang Q, Yuan C (2016) MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon 98:84–89CrossRef
131.
go back to reference Xiong Q, Zhang X, Wang H, Liu G, Wang G, Zhang H, Zhao H (2018) One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem Commun 54:3859–3862CrossRef Xiong Q, Zhang X, Wang H, Liu G, Wang G, Zhang H, Zhao H (2018) One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem Commun 54:3859–3862CrossRef
132.
go back to reference Xu W, Wang H (2017) Earth-abundant amorphous catalysts for electrolysis of water. Chin J Catal 38:991–1005CrossRef Xu W, Wang H (2017) Earth-abundant amorphous catalysts for electrolysis of water. Chin J Catal 38:991–1005CrossRef
133.
go back to reference Yang F, Kang N, Yan J, Wang X, He J, Huo S, Song L (2018) Hydrogen evolution reaction property of molybdenum disulphide/nickel phosphide hybrids in alkaline solution. Metals 8:359–376CrossRef Yang F, Kang N, Yan J, Wang X, He J, Huo S, Song L (2018) Hydrogen evolution reaction property of molybdenum disulphide/nickel phosphide hybrids in alkaline solution. Metals 8:359–376CrossRef
135.
go back to reference Yang Y, Yang H, Liang C, Zhu X (2018) Synthesis and characterization of Ni-Co electrocatalyst for hydrogen evolution reaction in acidic media. Int J Electrochem Sci 13:7193–7205CrossRef Yang Y, Yang H, Liang C, Zhu X (2018) Synthesis and characterization of Ni-Co electrocatalyst for hydrogen evolution reaction in acidic media. Int J Electrochem Sci 13:7193–7205CrossRef
136.
go back to reference Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM (2016) Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16:1097–1103CrossRef Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM (2016) Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16:1097–1103CrossRef
137.
go back to reference Yu X, Zhao J, Zheng LR, Tong Y, Zhang M, Xu G, Li C, Ma J, Shi G (2018) Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett 3:237–244CrossRef Yu X, Zhao J, Zheng LR, Tong Y, Zhang M, Xu G, Li C, Ma J, Shi G (2018) Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett 3:237–244CrossRef
139.
go back to reference Zeng X, Niu L, Song L, Wang X, Shi X, Yan J (2015) Effect of polymer addition on the structure and hydrogen evolution reaction property of nanoflower-like molybdenum disulfide. Metals 5:1829–1844CrossRef Zeng X, Niu L, Song L, Wang X, Shi X, Yan J (2015) Effect of polymer addition on the structure and hydrogen evolution reaction property of nanoflower-like molybdenum disulfide. Metals 5:1829–1844CrossRef
140.
go back to reference Zhang L, Guo Y, Igbal A, Li B, Gong D, Liu W, Igbal K, Liu W, Qin W (2018) One step synthesis of the 3D flower-like heterostructures MoS2/CuS nanohybrid for electrocatalytic hydrogen energy. Int J Hydrogen Energy 43:1251–1260CrossRef Zhang L, Guo Y, Igbal A, Li B, Gong D, Liu W, Igbal K, Liu W, Qin W (2018) One step synthesis of the 3D flower-like heterostructures MoS2/CuS nanohybrid for electrocatalytic hydrogen energy. Int J Hydrogen Energy 43:1251–1260CrossRef
141.
go back to reference Zhang WL, Jiang D, Wang X, Hao BN, Liu YD, Liu J (2017) Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis. J Phys Chem C 121:4989–4998CrossRef Zhang WL, Jiang D, Wang X, Hao BN, Liu YD, Liu J (2017) Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis. J Phys Chem C 121:4989–4998CrossRef
142.
go back to reference Zhang LF, Ke X, Ou G, Wei H, Wang LN, Wu H (2017) Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through ball-milling method. Sci China Mater 60:849–856CrossRef Zhang LF, Ke X, Ou G, Wei H, Wang LN, Wu H (2017) Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through ball-milling method. Sci China Mater 60:849–856CrossRef
143.
go back to reference Zhang N, Ma W, Wu T, Wang H, Han D, Niu L (2015) Edge-rich MoS2 nanosheets rooting into polyaniline nanofibers as effective catalyst for electrochemical hydrogen evolution. Electrochim Acta 180:155–163CrossRef Zhang N, Ma W, Wu T, Wang H, Han D, Niu L (2015) Edge-rich MoS2 nanosheets rooting into polyaniline nanofibers as effective catalyst for electrochemical hydrogen evolution. Electrochim Acta 180:155–163CrossRef
144.
go back to reference Zhang C, Wang Z, Bhoyate S, Morey T, Neria BL, Vasirajn V, Gupta G, Palchoudhury S, Kahol PK, Mishra SR, Perez F, Gupta RK (2017) MoS2 decorated carbon nanofibers as efficient and durable electrocatalyst for hydrogen evolution reaction. J Carbon Res 3:33–44CrossRef Zhang C, Wang Z, Bhoyate S, Morey T, Neria BL, Vasirajn V, Gupta G, Palchoudhury S, Kahol PK, Mishra SR, Perez F, Gupta RK (2017) MoS2 decorated carbon nanofibers as efficient and durable electrocatalyst for hydrogen evolution reaction. J Carbon Res 3:33–44CrossRef
145.
go back to reference Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal 7:7855–7865CrossRef Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal 7:7855–7865CrossRef
146.
go back to reference Zhang P, Xu B, Chen G, Gao C, Gao M (2018) Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochim Acta 270:256–263CrossRef Zhang P, Xu B, Chen G, Gao C, Gao M (2018) Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochim Acta 270:256–263CrossRef
147.
go back to reference Zhang X, Yang Y, Ding S, Que W, Zheng Z, Du Y (2017) Construction of high-quality SnO2@MoS2 nanohybrids for promising photoelectrocatalytic applications. Inorg Chem 56:3386–3393CrossRef Zhang X, Yang Y, Ding S, Que W, Zheng Z, Du Y (2017) Construction of high-quality SnO2@MoS2 nanohybrids for promising photoelectrocatalytic applications. Inorg Chem 56:3386–3393CrossRef
148.
go back to reference Zhang Y, Zeng W, Li Y (2018) Hydrothermal synthesis and controlled growth of hierarchical 3D flowerlike MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl Surf Sci 455:276–282CrossRef Zhang Y, Zeng W, Li Y (2018) Hydrothermal synthesis and controlled growth of hierarchical 3D flowerlike MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl Surf Sci 455:276–282CrossRef
149.
go back to reference Zhang Y, Zeng W, Li Y (2018) The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J Alloy Compd 749:355–362CrossRef Zhang Y, Zeng W, Li Y (2018) The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J Alloy Compd 749:355–362CrossRef
150.
go back to reference Zhao X, Ma X, Lu Q, Li Q, Han C, Xing Z, Yang X (2017) FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 as an excellent electrocatalyst for high-performance hydrogen evolution. Electrochim Acta 249:72–78CrossRef Zhao X, Ma X, Lu Q, Li Q, Han C, Xing Z, Yang X (2017) FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 as an excellent electrocatalyst for high-performance hydrogen evolution. Electrochim Acta 249:72–78CrossRef
151.
go back to reference Zhao S, Weng J, Jin S, Lv Y, Ji Z (2018) Chemical vapor transport deposition of molybdenum disulfide layers using H2O vapor as the transport agent. Coatings 8:78–86CrossRef Zhao S, Weng J, Jin S, Lv Y, Ji Z (2018) Chemical vapor transport deposition of molybdenum disulfide layers using H2O vapor as the transport agent. Coatings 8:78–86CrossRef
152.
go back to reference Zhou W, Jia J, Lu J, Yang L, Hou D, Li G (2016) Recent developments of carbon based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43CrossRef Zhou W, Jia J, Lu J, Yang L, Hou D, Li G (2016) Recent developments of carbon based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43CrossRef
153.
go back to reference Zhou W, Zhou K, Hou D, Liu X, Li G, Sang Y, Liu H, Li L, Chen S (2014) Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 6:21534–21540CrossRef Zhou W, Zhou K, Hou D, Liu X, Li G, Sang Y, Liu H, Li L, Chen S (2014) Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 6:21534–21540CrossRef
155.
go back to reference Zuo LX, Jiang LP, Abdel-Halim ES, Zhu JJ (2017) Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason Sonochem 35:219–225CrossRef Zuo LX, Jiang LP, Abdel-Halim ES, Zhu JJ (2017) Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason Sonochem 35:219–225CrossRef
156.
go back to reference Zuo LX, Jiang LP, Zhu JJ (2017) A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction. Ultrason Sonochem 35:681–688CrossRef Zuo LX, Jiang LP, Zhu JJ (2017) A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction. Ultrason Sonochem 35:681–688CrossRef
Metadata
Title
State-of-the-Art Advances and Perspectives for Electrocatalysis
Authors
Kabelo E. Ramohlola
Mpitloane J. Hato
Gobeng R. Monama
Edwin Makhado
Emmanuel I. Iwuoha
Kwena D. Modibane
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-27161-9_13