Skip to main content
Top
Published in: Metallurgist 7-8/2021

16-11-2021

State-of-the-Art and Problems of Bioleaching of Metals from Ash-and-Slag Wastes

Authors: V. A. Snegirev, T. M. Sabirova

Published in: Metallurgist | Issue 7-8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a survey devoted to the search and analysis of the scientific and technical literature and patent information on the use of biological methods for the extraction of valuable metals from the ash and slag wastes of thermal power plants and waste incineration plants operating on coals and shales. The physical and chemical properties of ash-and-slag wastes and their components are investigated. We also study specific features and problems of bioleaching of nonferrous and less-common (aluminum, vanadium, germanium, and gallium) metals and rare-earth elements from the ash-and-slag wastes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. I. Shamrai, A. V. Taskin, S. I. Ivannikov, and A. A. Yudakov, “Investigation of the possibilities of complex recycling of wastes of the power-generating industry of the Primorskiy Krai,” Sovrem. Naukoemk. Tekhnol., No. 3, No. 3, 68–75 (2017). E. I. Shamrai, A. V. Taskin, S. I. Ivannikov, and A. A. Yudakov, “Investigation of the possibilities of complex recycling of wastes of the power-generating industry of the Primorskiy Krai,” Sovrem. Naukoemk. Tekhnol., No. 3, No. 3, 68–75 (2017).
2.
go back to reference M. P. Kurtis and Y. E. Yudovich, “Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals,” Int. J. Coal Geol., 78, 135–148 (2009). M. P. Kurtis and Y. E. Yudovich, “Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals,” Int. J. Coal Geol., 78, 135–148 (2009).
3.
go back to reference A. C. Chang, L. J. Lund, A. L. Page, and J. E. Warneke, “Physical properties of fly ash-amended soils,” J. Environ. Qual., 6, 267–270 (1977). A. C. Chang, L. J. Lund, A. L. Page, and J. E. Warneke, “Physical properties of fly ash-amended soils,” J. Environ. Qual., 6, 267–270 (1977).
4.
go back to reference C. Belviso, “State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues,” Prog. Energy Combust. Sci., 65, 109–135 (2018). C. Belviso, “State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues,” Prog. Energy Combust. Sci., 65, 109–135 (2018).
5.
go back to reference D. A. Tolle, M. F. Arthur, and S. E. Pomeroy, Fly Ash Use for Agriculture and Land Reclamation: A Critical Literature Review and Identification of Additional Research Needs, RP–1224–5, Battelle Columbus Laboratories, Columbus, Ohio (1982). D. A. Tolle, M. F. Arthur, and S. E. Pomeroy, Fly Ash Use for Agriculture and Land Reclamation: A Critical Literature Review and Identification of Additional Research Needs, RP–1224–5, Battelle Columbus Laboratories, Columbus, Ohio (1982).
6.
go back to reference M. Singh and R. Siddique, “Effect of coal bottom ash as partial replacement of sand on properties of concrete,” Resour., Conserv. Recycl., 72, 20–32 (2013). M. Singh and R. Siddique, “Effect of coal bottom ash as partial replacement of sand on properties of concrete,” Resour., Conserv. Recycl., 72, 20–32 (2013).
7.
go back to reference R. P. Lohtia and R. C. Joshi, “Mineral admixtures,” in: V. S. Ramachandran (editor), Concrete Admixtures Handbook: Properties, Science and Technology, William Andrew (1995), pp. 657–739. R. P. Lohtia and R. C. Joshi, “Mineral admixtures,” in: V. S. Ramachandran (editor), Concrete Admixtures Handbook: Properties, Science and Technology, William Andrew (1995), pp. 657–739.
8.
go back to reference W. J. Halstead, Use of Fly Ash in Concrete, Series: National Cooperative Highway Research Program, Synthesis of Highway Practice, Issue 127, Transportation Research Board, Washington, DC (1986). W. J. Halstead, Use of Fly Ash in Concrete, Series: National Cooperative Highway Research Program, Synthesis of Highway Practice, Issue 127, Transportation Research Board, Washington, DC (1986).
9.
go back to reference M. Ahmaruzzaman, “Role of fly ash in the removal of organic pollutants from wastewater,” Energy Fuels, 23, Issue 3, 1494–1511 (2009). M. Ahmaruzzaman, “Role of fly ash in the removal of organic pollutants from wastewater,” Energy Fuels, 23, Issue 3, 1494–1511 (2009).
10.
go back to reference J. K. Tishmack and P. E. Burns, “The chemistry and mineralogy of coal and coal combustion products,” in: R. Giere and P. Stille (editors), Energy, Waste and Environment: A Geochemical Perspective, Special Publication No. 236, Geological Society, London (2004), pp. 223–246. J. K. Tishmack and P. E. Burns, “The chemistry and mineralogy of coal and coal combustion products,” in: R. Giere and P. Stille (editors), Energy, Waste and Environment: A Geochemical Perspective, Special Publication No. 236, Geological Society, London (2004), pp. 223–246.
11.
go back to reference F. B. Glasser, “Coal combustion wastes: characterization, reuse and disposal,” in: R. Giere and P Stille (editors), Energy, Waste and Environment: A Geochemical Perspective, Special Publication No. 236, Geological Society, London (2004), pp. 211–222. F. B. Glasser, “Coal combustion wastes: characterization, reuse and disposal,” in: R. Giere and P Stille (editors), Energy, Waste and Environment: A Geochemical Perspective, Special Publication No. 236, Geological Society, London (2004), pp. 211–222.
12.
go back to reference G. J. McCarthy, D. G. Grier, M. A. Wisdom, R. B. Peterson, S. L. Lerach, R. L. Jarabek, J. J. Walsh, and R. S. Winburn, “Coal combustion by-product digenesis II,” in: R. Herfh (editor), Proc. of the Internat. Ash Utilization Symp., Paper No. 67, Center for Applied Energy Research, University of Kentucky, Lexington, KY (1999). G. J. McCarthy, D. G. Grier, M. A. Wisdom, R. B. Peterson, S. L. Lerach, R. L. Jarabek, J. J. Walsh, and R. S. Winburn, “Coal combustion by-product digenesis II,” in: R. Herfh (editor), Proc. of the Internat. Ash Utilization Symp., Paper No. 67, Center for Applied Energy Research, University of Kentucky, Lexington, KY (1999).
14.
go back to reference V. G. Panteleev, É. A. Larina, and V. E. Melent’ev, Composition and Properties of Ash and Slag of Thermal Power Plants: A Handbook [in Russian], Énergoatomizdat, Leningrad (1985). V. G. Panteleev, É. A. Larina, and V. E. Melent’ev, Composition and Properties of Ash and Slag of Thermal Power Plants: A Handbook [in Russian], Énergoatomizdat, Leningrad (1985).
15.
go back to reference Valuable and Toxic Elements in the Commercial Coals of Russia: A Handbook [in Russian], Rosugol’ Russian State Company, Nedra, Moscow (1996). Valuable and Toxic Elements in the Commercial Coals of Russia: A Handbook [in Russian], Rosugol’ Russian State Company, Nedra, Moscow (1996).
16.
go back to reference National Research Council (US), Managing Coal Combustion Residues in Mines, National Academy Press, Washington (2006). National Research Council (US), Managing Coal Combustion Residues in Mines, National Academy Press, Washington (2006).
17.
go back to reference Council of Industrial Boiler Owners. Report to the US Environmental Protection Agency on Fossil Fuel Combustion Byproducts from Fluidized Bed Boilers. Council of Industrial Boiler Owners, Burke, VA (1997). Council of Industrial Boiler Owners. Report to the US Environmental Protection Agency on Fossil Fuel Combustion Byproducts from Fluidized Bed Boilers. Council of Industrial Boiler Owners, Burke, VA (1997).
18.
go back to reference US Environmental Protection Agency. Class V Underground Injection Control Study. EPA/816-R-99–014. US Environmental Protection Agency, Office of Ground Water and Drinking Water, Vol. 10, Washington, DC (1999). US Environmental Protection Agency. Class V Underground Injection Control Study. EPA/816-R-99–014. US Environmental Protection Agency, Office of Ground Water and Drinking Water, Vol. 10, Washington, DC (1999).
19.
go back to reference US Environmental Protection Agency. Technical Background Document forth Report to Congress on Remaining Wastes from Fossil Fuel Combustion: Waste Characterization. EPA 530-R-99–010. Science Applications International Corporation, Vol. 5, San Diego, CA (1999). US Environmental Protection Agency. Technical Background Document forth Report to Congress on Remaining Wastes from Fossil Fuel Combustion: Waste Characterization. EPA 530-R-99–010. Science Applications International Corporation, Vol. 5, San Diego, CA (1999).
20.
go back to reference R. Siddique, “Use of municipal solid waste ash in concrete,” Resour., Conserv. Recycl., 55, 83–91 (2010). R. Siddique, “Use of municipal solid waste ash in concrete,” Resour., Conserv. Recycl., 55, 83–91 (2010).
21.
go back to reference A. M. Gonopol’skii, M. M. Dygan, and A. A. Timofeeva, “Some physicochemical properties of ash-and-slag wastes of waste incineration plants” Ékolog. Promyshl. Rossii, No. 7, 36–39 (2008). A. M. Gonopol’skii, M. M. Dygan, and A. A. Timofeeva, “Some physicochemical properties of ash-and-slag wastes of waste incineration plants” Ékolog. Promyshl. Rossii, No. 7, 36–39 (2008).
22.
go back to reference A. I. Fomenko and L. I. Sokolov, “Ash of waste incineration plants as an anthropogenic resource for the extraction of rare-earth elements,” Ékolog. Promyshl. Rossii, 21, No. 12, 28–31 (2017). A. I. Fomenko and L. I. Sokolov, “Ash of waste incineration plants as an anthropogenic resource for the extraction of rare-earth elements,” Ékolog. Promyshl. Rossii, 21, No. 12, 28–31 (2017).
23.
go back to reference C. C. Wiles, “Municipal solid waste combustion ash: State-of-the-knowledge,” J. Hazard. Mater., 47, 325–344 (1996). C. C. Wiles, “Municipal solid waste combustion ash: State-of-the-knowledge,” J. Hazard. Mater., 47, 325–344 (1996).
24.
go back to reference O. Goren, “Distribution and mineralogical residence of trace elements in the Israeli carbonate oil shales,” Fuel, 143, 118–130 (2015). O. Goren, “Distribution and mineralogical residence of trace elements in the Israeli carbonate oil shales,” Fuel, 143, 118–130 (2015).
25.
go back to reference E. Hasanen, L. Aunela-Tapola, V. Kinnunena, K. Larjava, A. Mehtonena, T. Salmikangas, J. Leskela, and J. Loosaar, “Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants,” Sci. Total Environ., 198, 1–12 (1997). E. Hasanen, L. Aunela-Tapola, V. Kinnunena, K. Larjava, A. Mehtonena, T. Salmikangas, J. Leskela, and J. Loosaar, “Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants,” Sci. Total Environ., 198, 1–12 (1997).
26.
go back to reference I. A. Blaida, T. V. Vasil’eva, L. I. Slyusarenko, and V. F. Khitrich, “Behavior of germanium and gallium in the recycling of ash from combustion of coals by the chemical and microbiological methods,” Khim. Khim. Tekhnol., 1, No. 1, 78–83 (2014). I. A. Blaida, T. V. Vasil’eva, L. I. Slyusarenko, and V. F. Khitrich, “Behavior of germanium and gallium in the recycling of ash from combustion of coals by the chemical and microbiological methods,” Khim. Khim. Tekhnol., 1, No. 1, 78–83 (2014).
27.
go back to reference C. Brombacher, R. Bachofen, and H. Brandl, “Biohydrometallurgical processing of solids: a patent review,” Appl. Environ. Microbiol., 48, 577–587 (1997). C. Brombacher, R. Bachofen, and H. Brandl, “Biohydrometallurgical processing of solids: a patent review,” Appl. Environ. Microbiol., 48, 577–587 (1997).
28.
go back to reference C. Brombacher, R. Bachofen, and H. Brandl, “Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus stains,” Appl. Environ. Microbiol., 64, 1237–1241 (1988). C. Brombacher, R. Bachofen, and H. Brandl, “Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus stains,” Appl. Environ. Microbiol., 64, 1237–1241 (1988).
29.
go back to reference W. Krebs, C. Brombacher, P. P. Bosshard, R. Bachofen, and H. Brandl, “Microbial recovery of metals from solids,” FEMS Microbiol. Rev., 20, 605–617 (1997). W. Krebs, C. Brombacher, P. P. Bosshard, R. Bachofen, and H. Brandl, “Microbial recovery of metals from solids,” FEMS Microbiol. Rev., 20, 605–617 (1997).
30.
go back to reference A. Seidel, Y. Zimmels, and R. Armon, “Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans,” Chem. Eng. J., 83, 123–130 (2001). A. Seidel, Y. Zimmels, and R. Armon, “Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans,” Chem. Eng. J., 83, 123–130 (2001).
31.
go back to reference T. Ishigaki, A. Nakanishi, M. Tateda M., Ike M., and M. Fujita, “Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfuroxidizing and iron-oxidizing bacteria,” Chemosphere, 60, 1087–1094 (2005). T. Ishigaki, A. Nakanishi, M. Tateda M., Ike M., and M. Fujita, “Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfuroxidizing and iron-oxidizing bacteria,” Chemosphere, 60, 1087–1094 (2005).
32.
go back to reference R. Sierra-Alvarez, “Removal of copper, chromium, and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching,” Waste Manage., 29, 1885–1891 (2009). R. Sierra-Alvarez, “Removal of copper, chromium, and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching,” Waste Manage., 29, 1885–1891 (2009).
33.
go back to reference C. L. Brierley, “Biohydrometallurgical prospects,” Hydrometallurgy, 104, 324–328 (2010). C. L. Brierley, “Biohydrometallurgical prospects,” Hydrometallurgy, 104, 324–328 (2010).
34.
go back to reference J. Mäkinen, J. Bachér, T. Kaartinen, M. Wahlström, and J. Salminen, “The effect of flotation and parameters for bioleaching of printed circuit board,” Miner. Eng., 75, 26–31 (2015). J. Mäkinen, J. Bachér, T. Kaartinen, M. Wahlström, and J. Salminen, “The effect of flotation and parameters for bioleaching of printed circuit board,” Miner. Eng., 75, 26–31 (2015).
35.
go back to reference J. Lee and B. D. Pandey, “Bioprocessing of solid wastes and secondary resources for metal extraction,” Waste Manage., 32, 3–18 (2012). J. Lee and B. D. Pandey, “Bioprocessing of solid wastes and secondary resources for metal extraction,” Waste Manage., 32, 3–18 (2012).
36.
go back to reference A. Seidel, A. Sluszny, G. Shelef, and Y. Zimmels, “Self-inhibition of aluminum leaching from coal fly ash by sulfuric acid,” Chem. Eng. J., 72, 195–207 (1999). A. Seidel, A. Sluszny, G. Shelef, and Y. Zimmels, “Self-inhibition of aluminum leaching from coal fly ash by sulfuric acid,” Chem. Eng. J., 72, 195–207 (1999).
37.
go back to reference S. A. Moshnyakova, G. I. Karavaiko, and E. V. Schetinina, “The role of Thiobacillus ferrooxidans in leaching of Ni, Cu, Co, Fe, Al and Ca from ores of copper–nickel deposits,” Mikrobiologia, 40, 1100–1107 (1971). S. A. Moshnyakova, G. I. Karavaiko, and E. V. Schetinina, “The role of Thiobacillus ferrooxidans in leaching of Ni, Cu, Co, Fe, Al and Ca from ores of copper–nickel deposits,” Mikrobiologia, 40, 1100–1107 (1971).
38.
go back to reference S. M. Groudev, F. N. Gencev, and V. I. Groudeva, “Use of microorganisms for recovery of aluminum from alumino silicate. Achievements and prospects,” Travaux, 12, 203–212 (1982). S. M. Groudev, F. N. Gencev, and V. I. Groudeva, “Use of microorganisms for recovery of aluminum from alumino silicate. Achievements and prospects,” Travaux, 12, 203–212 (1982).
39.
go back to reference L. N. Fleming, H. N. Abinteh, and H. I. Inyang, “Leachant pH effects on the leachability of metals from fly ash,” J. Soil Contaminat., 5, 53–59 (1996). L. N. Fleming, H. N. Abinteh, and H. I. Inyang, “Leachant pH effects on the leachability of metals from fly ash,” J. Soil Contaminat., 5, 53–59 (1996).
40.
go back to reference N. Nayak and C. R. Panda, “Aluminum extraction and leaching characteristics of Talcher Thermal Power Station fly ash with sulphuric acid,” Fuel, 89, 53–58 (2010). N. Nayak and C. R. Panda, “Aluminum extraction and leaching characteristics of Talcher Thermal Power Station fly ash with sulphuric acid,” Fuel, 89, 53–58 (2010).
41.
go back to reference S. Khanra, D. Mallick, S. N. Dutta, and S. K. Chaudhuri, “Studies on the phase mineralogy and leaching characteristics of coal fly ash,” Water, Air Soil Poll., 107, 251–275 (1988). S. Khanra, D. Mallick, S. N. Dutta, and S. K. Chaudhuri, “Studies on the phase mineralogy and leaching characteristics of coal fly ash,” Water, Air Soil Poll., 107, 251–275 (1988).
42.
go back to reference C. A. Rice, G. N. Breit, N. S. Fishman, and J. H. Bullock, “Leachability of trace elements in coal and coal combustion wastes,” in: Proc. of the 24th Internat. Tech. Conf. on Coal Utilization and Fuel Systems, Coal & Slurry Technology Association, Clearwater, Florida, USA (1999), pp. 355–366. C. A. Rice, G. N. Breit, N. S. Fishman, and J. H. Bullock, “Leachability of trace elements in coal and coal combustion wastes,” in: Proc. of the 24th Internat. Tech. Conf. on Coal Utilization and Fuel Systems, Coal & Slurry Technology Association, Clearwater, Florida, USA (1999), pp. 355–366.
43.
go back to reference N. S. Pandian and S. Balasubramonian, “Leaching studies on ASTM type F fly ashes by an accelerated process method,” J. Test. Eval., 28, 44–51 (2000). N. S. Pandian and S. Balasubramonian, “Leaching studies on ASTM type F fly ashes by an accelerated process method,” J. Test. Eval., 28, 44–51 (2000).
44.
go back to reference S. B. Kanungo and R. Mohapatra, “Leaching behavior of various trace metals in aqueous medium from two fly ash samples,” J. Environ. Qual., 29, 188–196 (2000). S. B. Kanungo and R. Mohapatra, “Leaching behavior of various trace metals in aqueous medium from two fly ash samples,” J. Environ. Qual., 29, 188–196 (2000).
45.
go back to reference A. Singer, J. Navrot, and R. Shapira, “Extraction of aluminum from fly ash by commercial and microbiologically produced citric acid,” Appl. Microbiol. Biotechnol., 16, 228–230 (1982). A. Singer, J. Navrot, and R. Shapira, “Extraction of aluminum from fly ash by commercial and microbiologically produced citric acid,” Appl. Microbiol. Biotechnol., 16, 228–230 (1982).
46.
go back to reference T.-J. Xu and Y.-P. Ting, “Optimization on bioleaching of incinerator fly ash by Aspergillus niger — use of central composite design,” Enzyme Microb. Technol., 35, 444–454 (2004). T.-J. Xu and Y.-P. Ting, “Optimization on bioleaching of incinerator fly ash by Aspergillus niger — use of central composite design,” Enzyme Microb. Technol., 35, 444–454 (2004).
47.
go back to reference I. Tsuboi, S. Kasai, E. Kunugita, and I. Komosawa, “Recovery of gallium and vanadium from coal fly ash,” J. Chem. Eng. Jap., 24, 15–20 (1991). I. Tsuboi, S. Kasai, E. Kunugita, and I. Komosawa, “Recovery of gallium and vanadium from coal fly ash,” J. Chem. Eng. Jap., 24, 15–20 (1991).
48.
go back to reference K. Park, “Recovery of vanadium and nickel from heavy oil fly ash,” in: Proc. of the 2nd Internat. Symp. on East-Asian Resources Recycling Technology, Seoul, South Korea (1993), p. 211. K. Park, “Recovery of vanadium and nickel from heavy oil fly ash,” in: Proc. of the 2nd Internat. Symp. on East-Asian Resources Recycling Technology, Seoul, South Korea (1993), p. 211.
49.
go back to reference R. Navarro, J. Guzman, I. Saucedo, J. Revilla, and E. Guibal, “Vanadium recovery from oil fly ash by leaching, precipitation, and solvent extraction processes,” Waste Managem., 27, 425–438 (2007). R. Navarro, J. Guzman, I. Saucedo, J. Revilla, and E. Guibal, “Vanadium recovery from oil fly ash by leaching, precipitation, and solvent extraction processes,” Waste Managem., 27, 425–438 (2007).
50.
go back to reference A. G. Chmielewski, T. S. Urbaski, and W. Migda, “Separation technologies for metals recovery from industrial wastes,” Hydrometallurgy, 45, 333–344 (1997). A. G. Chmielewski, T. S. Urbaski, and W. Migda, “Separation technologies for metals recovery from industrial wastes,” Hydrometallurgy, 45, 333–344 (1997).
51.
go back to reference T. Akaboshi, N. Kaneko, A. Sakuma, and T. Sugiyama, “Recovery of ammonium metavanadate from petroleum-combustion residues,” Jap. Kokai Tokkyo Koho, 62, 298–489 (1987). T. Akaboshi, N. Kaneko, A. Sakuma, and T. Sugiyama, “Recovery of ammonium metavanadate from petroleum-combustion residues,” Jap. Kokai Tokkyo Koho, 62, 298–489 (1987).
52.
go back to reference S. Vitolo, M. Seggiani, S. Filippi, and C. Brocchini, “Recovery of vanadium from heavy oil and Orimulsion fly ashes,” Hydrometallurgy, 57, 141–149 (2000). S. Vitolo, M. Seggiani, S. Filippi, and C. Brocchini, “Recovery of vanadium from heavy oil and Orimulsion fly ashes,” Hydrometallurgy, 57, 141–149 (2000).
53.
go back to reference H. Tokuyama, S. Nii, F. Kawaizumi, and K. Takahashi, “Separation of V from Ferich leachant of heavy oil fly ash: application of an ion exchange moving bed,” J. Chem. Eng. Jap., 36, 486–492 (2003). H. Tokuyama, S. Nii, F. Kawaizumi, and K. Takahashi, “Separation of V from Ferich leachant of heavy oil fly ash: application of an ion exchange moving bed,” J. Chem. Eng. Jap., 36, 486–492 (2003).
54.
go back to reference S. O. Rastegar, S. M. Mousavi, S. A. Shojaosadati, and R. Sarraf Mamoory, “Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans,” Hydrometallurgy, 157, 50–59 (2015). S. O. Rastegar, S. M. Mousavi, S. A. Shojaosadati, and R. Sarraf Mamoory, “Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans,” Hydrometallurgy, 157, 50–59 (2015).
55.
go back to reference Y. Dong, H. Lin, Y. Liu, and Y. Zhao, “Blank roasting and bioleaching of stone coal for vanadium recycling,” J. Clean. Prod., 243, 118625 (2020). Y. Dong, H. Lin, Y. Liu, and Y. Zhao, “Blank roasting and bioleaching of stone coal for vanadium recycling,” J. Clean. Prod., 243, 118625 (2020).
56.
go back to reference Z. Fang and H. D. Gesser, “Recovery of gallium from coal fly ash,” Hydrometallurgy, 41, 187–200 (1996). Z. Fang and H. D. Gesser, “Recovery of gallium from coal fly ash,” Hydrometallurgy, 41, 187–200 (1996).
57.
go back to reference B. Gutierrez, C. Pazos, and J. Coca, “Recovery of gallium from coal fly ash by a dual reactive extraction process,” Waste Manag. Res., 15, 371–382 (1997). B. Gutierrez, C. Pazos, and J. Coca, “Recovery of gallium from coal fly ash by a dual reactive extraction process,” Waste Manag. Res., 15, 371–382 (1997).
58.
go back to reference O. Font, X. Querol, A. Lopez-Soler, J. M. Chimenos, and A. I. Fernandez, “Ge extraction from gasification fly ash,” Fuel, 84, 1384–1392 (2005). O. Font, X. Querol, A. Lopez-Soler, J. M. Chimenos, and A. I. Fernandez, “Ge extraction from gasification fly ash,” Fuel, 84, 1384–1392 (2005).
59.
go back to reference O. Font, X. Querol, R. Juan, R. Casado, C. R. Ruiz, A. Lopez-Soler, P. Coca, and F. G. Pena, “Recovery of gallium and vanadium from gasification fly ash,” J. Hazard. Mater., 139, 413–423 (2007). O. Font, X. Querol, R. Juan, R. Casado, C. R. Ruiz, A. Lopez-Soler, P. Coca, and F. G. Pena, “Recovery of gallium and vanadium from gasification fly ash,” J. Hazard. Mater., 139, 413–423 (2007).
60.
go back to reference B. Gupta, N. Mudhar, and I. Singh, “Separations and recovery of indium and gallium using bis-(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272),” Sep. Purif. Technol., 57, 294–303 (2007). B. Gupta, N. Mudhar, and I. Singh, “Separations and recovery of indium and gallium using bis-(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272),” Sep. Purif. Technol., 57, 294–303 (2007).
61.
go back to reference I. A. Blaida, T. V. Vasil’eva, L. I. Slyusarenko, B. N. Galkin, and V. A. Ivanitsa, “Influence of the compositions of leaching solutions on the process of bacterial extraction of metals from industrial wastes,” Biotekhnologiya, 5, No. 3, 84–90 (2012). I. A. Blaida, T. V. Vasil’eva, L. I. Slyusarenko, B. N. Galkin, and V. A. Ivanitsa, “Influence of the compositions of leaching solutions on the process of bacterial extraction of metals from industrial wastes,” Biotekhnologiya, 5, No. 3, 84–90 (2012).
62.
go back to reference B. S. Ksenofontov, A. S. Kozodaev, R. A. Taranov, M. S. Vinogradov, E. V. Senik, and A. A. Voropaeva, Methods for Bacterial Leaching of Rare-Earth and Noble Metals from Ashes and Slags [in Russian], Patent of Russian Federation 2580258, MPK C 22 B 7/04, Applied on 27.11.2014, Publ. on 10.04.2016, Bull. No. 10. B. S. Ksenofontov, A. S. Kozodaev, R. A. Taranov, M. S. Vinogradov, E. V. Senik, and A. A. Voropaeva, Methods for Bacterial Leaching of Rare-Earth and Noble Metals from Ashes and Slags [in Russian], Patent of Russian Federation 2580258, MPK C 22 B 7/04, Applied on 27.11.2014, Publ. on 10.04.2016, Bull. No. 10.
63.
go back to reference B. S. Ksenofontov, A. S. Kozodaev, R. A. Taranov, A. A. Balina, M. S. Vinogradov, and E. V. Petrova, “Treatment of coal ashes of the plants of power-generating industry in the processes of bacterial leaching of rare-earth elements,” Bezopasn. Tekhnosfer., 2, No. 4 (43), 17–22 (2013). B. S. Ksenofontov, A. S. Kozodaev, R. A. Taranov, A. A. Balina, M. S. Vinogradov, and E. V. Petrova, “Treatment of coal ashes of the plants of power-generating industry in the processes of bacterial leaching of rare-earth elements,” Bezopasn. Tekhnosfer., 2, No. 4 (43), 17–22 (2013).
64.
go back to reference B. S. Ksenofontov, A. S. Kozodaev, R. A. Taranov, M. S. Vinogradov, I. A. Butorova, E. V. Senik, and A. A. Voropaeva, “Leaching of rare-earth metals from the fly ashes of steam power plants,” Inzhener. Vestn., No. 11, 7 (2014). B. S. Ksenofontov, A. S. Kozodaev, R. A. Taranov, M. S. Vinogradov, I. A. Butorova, E. V. Senik, and A. A. Voropaeva, “Leaching of rare-earth metals from the fly ashes of steam power plants,” Inzhener. Vestn., No. 11, 7 (2014).
65.
go back to reference B. G. Kovrov, G. V. Denisov, and S. M. Sidel’nikov, Culture of Iron-Oxidizing Bacteria on the Electric Energy [in Russian], Nauka, Novosibirsk (1984). B. G. Kovrov, G. V. Denisov, and S. M. Sidel’nikov, Culture of Iron-Oxidizing Bacteria on the Electric Energy [in Russian], Nauka, Novosibirsk (1984).
66.
go back to reference A. A. Dzhambek, O. I. Dzhambek, I. A. Blaida, T. V. Vasil’eva, and L. I. Slyusarenko, “Electrochemical investigation of the process of bioleaching of germanium from the wastes of coal preparation,” Visn. Odes. Nats. Univ., Khim., 24, No. 1 (69), 74–79 (2019). A. A. Dzhambek, O. I. Dzhambek, I. A. Blaida, T. V. Vasil’eva, and L. I. Slyusarenko, “Electrochemical investigation of the process of bioleaching of germanium from the wastes of coal preparation,” Visn. Odes. Nats. Univ., Khim., 24, No. 1 (69), 74–79 (2019).
67.
go back to reference V. A. Snegirev and T. M. Sabirova, “On the bacterial leaching of nonferrous metals from the ash-and-slag wastes of the Troitsk State Regional Electric Station,” in: Chemistry and Chemical Technology in the 21st century. Proc. of the 20th Scientific and Practical Conf. of Students and Young Scientists in the Honor of Prof. L. P. Kulev [in Russian], Tomsk (2019), pp. 478–479. V. A. Snegirev and T. M. Sabirova, “On the bacterial leaching of nonferrous metals from the ash-and-slag wastes of the Troitsk State Regional Electric Station,” in: Chemistry and Chemical Technology in the 21st century. Proc. of the 20th Scientific and Practical Conf. of Students and Young Scientists in the Honor of Prof. L. P. Kulev [in Russian], Tomsk (2019), pp. 478–479.
Metadata
Title
State-of-the-Art and Problems of Bioleaching of Metals from Ash-and-Slag Wastes
Authors
V. A. Snegirev
T. M. Sabirova
Publication date
16-11-2021
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01217-7

Other articles of this Issue 7-8/2021

Metallurgist 7-8/2021 Go to the issue

Premium Partners