Skip to main content
Top
Published in: Journal of Nanoparticle Research 2/2013

01-02-2013 | Research Paper

Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach

Authors: Matilde Durán-Lobato, Alicia Enguix-González, Mercedes Fernández-Arévalo, Lucía Martín-Banderas

Published in: Journal of Nanoparticle Research | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lipid nanoparticles (LNPs) are a promising carrier for all administration routes due to their safety, small size, and high loading of lipophilic compounds. Among the LNP production techniques, the easy scale-up, lack of organic solvents, and short production times of the high-pressure homogenization technique (HPH) make this method stand out. In this study, a statistical analysis was applied to the production of LNP by HPH. Spherical LNPs with mean size ranging from 65 nm to 11.623 μm, negative zeta potential under –30 mV, and smooth surface were produced. Manageable equations based on commonly used parameters in the pharmaceutical field were obtained. The lipid to emulsifier ratio (R L/S) was proved to statistically explain the influence of oil phase and surfactant concentration on final nanoparticles size. Besides, the homogenization pressure was found to ultimately determine LNP size for a given R L/S, while the number of passes applied mainly determined polydispersion. α-Tocopherol was used as a model drug to illustrate release properties of LNP as a function of particle size, which was optimized by the regression models. This study is intended as a first step to optimize production conditions prior to LNP production at both laboratory and industrial scale from an eminently practical approach, based on parameters extensively used in formulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Araujo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 393:167–175CrossRef Araujo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 393:167–175CrossRef
go back to reference Biasutti M, Venir E, Marchesini G, Innocente N (2010) Rheological properties of model dairy emulsions as affected by high pressure homogenization. Innov Food Sci Emerg Technol 11:580–586CrossRef Biasutti M, Venir E, Marchesini G, Innocente N (2010) Rheological properties of model dairy emulsions as affected by high pressure homogenization. Innov Food Sci Emerg Technol 11:580–586CrossRef
go back to reference Bondì ML, Craparo EF, Giammona G, Drago F (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond, Engl) 5:25–32CrossRef Bondì ML, Craparo EF, Giammona G, Drago F (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond, Engl) 5:25–32CrossRef
go back to reference Charcosset C, El-Harati A, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 108:112–120CrossRef Charcosset C, El-Harati A, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 108:112–120CrossRef
go back to reference Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S (2007) Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 59:444–453CrossRef Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S (2007) Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 59:444–453CrossRef
go back to reference Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76CrossRef Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76CrossRef
go back to reference El-Harati AA, Charcosset C, Fessi H (2006) Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm Dev Technol 11:153–157CrossRef El-Harati AA, Charcosset C, Fessi H (2006) Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm Dev Technol 11:153–157CrossRef
go back to reference Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1:127–134CrossRef Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1:127–134CrossRef
go back to reference García-Fuentes M, Torres D, Alonso MJ (2002) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloid Surf B 27:159–168CrossRef García-Fuentes M, Torres D, Alonso MJ (2002) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloid Surf B 27:159–168CrossRef
go back to reference Gasco MR (1997) Solid lipid nanospheres from warm microemulsion. Pharm Technol Eur 9:32–42 Gasco MR (1997) Solid lipid nanospheres from warm microemulsion. Pharm Technol Eur 9:32–42
go back to reference Håkansson A, Fuchs L, Innings F, Revstedt J, Trägårdh C (2011) On flow-fields in a high pressure homogenizer and its implication on drop fragmentation. Procedia Food Sci 1:1353–1358CrossRef Håkansson A, Fuchs L, Innings F, Revstedt J, Trägårdh C (2011) On flow-fields in a high pressure homogenizer and its implication on drop fragmentation. Procedia Food Sci 1:1353–1358CrossRef
go back to reference Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880CrossRef Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880CrossRef
go back to reference Hu FQ, Yuan H, Zhang HH, Fang M (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm 239:121–128CrossRef Hu FQ, Yuan H, Zhang HH, Fang M (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm 239:121–128CrossRef
go back to reference Innocente N, Biasutti M, Venir E, Spaziani M, Marchesini E (2009) Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J Dairy Sci 92:1864–1875CrossRef Innocente N, Biasutti M, Venir E, Spaziani M, Marchesini E (2009) Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J Dairy Sci 92:1864–1875CrossRef
go back to reference Jafari S, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22:1191–1202CrossRef Jafari S, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22:1191–1202CrossRef
go back to reference Kluge J, Muhrer G, Mazzotti M (2012) High pressure homogenization of pharmaceutical solids. J Supercrit Fluids 66:380–388CrossRef Kluge J, Muhrer G, Mazzotti M (2012) High pressure homogenization of pharmaceutical solids. J Supercrit Fluids 66:380–388CrossRef
go back to reference Liedtke S, Wissing S, Müller RH, Mäder K (2000) Influence of high pressure homogenisation equipment on nanodispersions characteristics. Int J Pharm 196:183–185CrossRef Liedtke S, Wissing S, Müller RH, Mäder K (2000) Influence of high pressure homogenisation equipment on nanodispersions characteristics. Int J Pharm 196:183–185CrossRef
go back to reference Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195CrossRef Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195CrossRef
go back to reference Maindarkar SN, Raikar NB, Bongers P, Henson MA (2012) Incorporating emulsion drop coalescence into population balance equation models of high pressure homogenization. Colloids Surf A 396:63–73CrossRef Maindarkar SN, Raikar NB, Bongers P, Henson MA (2012) Incorporating emulsion drop coalescence into population balance equation models of high pressure homogenization. Colloids Surf A 396:63–73CrossRef
go back to reference McClements DJ (2005) Food emulsions principles, practices, and techniques, 2nd edn. CRC Press, Boca Raton McClements DJ (2005) Food emulsions principles, practices, and techniques, 2nd edn. CRC Press, Boca Raton
go back to reference Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196CrossRef Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196CrossRef
go back to reference Mishra DK, Dhote V, Bhatnagar P, Mishra PK (2012) Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research. Drug Deliv Transl Res 2:238–253CrossRef Mishra DK, Dhote V, Bhatnagar P, Mishra PK (2012) Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research. Drug Deliv Transl Res 2:238–253CrossRef
go back to reference Mohr K-H (1987a) High-pressure homogenization. Part I. Liquid–liquid dispersion in turbulence fields of high energy density. J Food Eng 6:177–186CrossRef Mohr K-H (1987a) High-pressure homogenization. Part I. Liquid–liquid dispersion in turbulence fields of high energy density. J Food Eng 6:177–186CrossRef
go back to reference Mohr K-H (1987b) The influence of cavitation on liquid–liquid dispersion in turbulence fields of high energy density. J Food Eng 6:311–324CrossRef Mohr K-H (1987b) The influence of cavitation on liquid–liquid dispersion in turbulence fields of high energy density. J Food Eng 6:311–324CrossRef
go back to reference Mucho M, Maincent P, Müller RH (2008) Lipid nanoparticles with a solid matrix (LNP, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34:1394–1405CrossRef Mucho M, Maincent P, Müller RH (2008) Lipid nanoparticles with a solid matrix (LNP, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34:1394–1405CrossRef
go back to reference Müller RH, Schwarz C, Zur Mühlen A, Mehnert W (1994) Incorporation of lipophilic drugs and drug release profiles of solid lipid nanoparticles (LNP). Proc Int Symp Control Release Bioact Mater 21:146 Müller RH, Schwarz C, Zur Mühlen A, Mehnert W (1994) Incorporation of lipophilic drugs and drug release profiles of solid lipid nanoparticles (LNP). Proc Int Symp Control Release Bioact Mater 21:146
go back to reference Müller RH, Maassen S, Schwarz C, Mehnert W (1997) Solid lipid nanoparticles (LNP) as potential carrier for human use: interaction with human granulocytes. J Control Release 47:261–269CrossRef Müller RH, Maassen S, Schwarz C, Mehnert W (1997) Solid lipid nanoparticles (LNP) as potential carrier for human use: interaction with human granulocytes. J Control Release 47:261–269CrossRef
go back to reference Müller RH, Dingler A, Schneppe T, Gohla S (2000a) Large scale production of solid lipid nanoparticles (SLN) and nanosuspensions (DissoCubes). In: Wise D (ed) Handbook of pharmaceutical controlled release technology [e-book]. Marcel Dekker, New York, pp 359–376 Müller RH, Dingler A, Schneppe T, Gohla S (2000a) Large scale production of solid lipid nanoparticles (SLN) and nanosuspensions (DissoCubes). In: Wise D (ed) Handbook of pharmaceutical controlled release technology [e-book]. Marcel Dekker, New York, pp 359–376
go back to reference Müller RH, Mäder K, Gohla S (2000b) Solid lipid nanoparticles (LNP) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRef Müller RH, Mäder K, Gohla S (2000b) Solid lipid nanoparticles (LNP) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRef
go back to reference Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (LNP, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184CrossRef Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (LNP, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184CrossRef
go back to reference Priano L, Esposti D, Castagna G, De Medici C, Fraschini F, Gasco MR, Mauro A (2007) Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol 7:3596–3601CrossRef Priano L, Esposti D, Castagna G, De Medici C, Fraschini F, Gasco MR, Mauro A (2007) Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol 7:3596–3601CrossRef
go back to reference Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, Ricci M (2008) Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 357:295–304CrossRef Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, Ricci M (2008) Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 357:295–304CrossRef
go back to reference Qian C, McClements DJ (2010) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008CrossRef Qian C, McClements DJ (2010) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008CrossRef
go back to reference Saheki A, Seki J, Nakanishi T, Tamai I (2012) Effect of back pressure on emulsification of lipid nanodispersions in a high-pressure homogenizer. Int J Pharm 422:489–494CrossRef Saheki A, Seki J, Nakanishi T, Tamai I (2012) Effect of back pressure on emulsification of lipid nanodispersions in a high-pressure homogenizer. Int J Pharm 422:489–494CrossRef
go back to reference Salmaso S, Elvassore N, Bertucco A, Caliceti P (2009) Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J Pharm Sci 98:640–650CrossRef Salmaso S, Elvassore N, Bertucco A, Caliceti P (2009) Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J Pharm Sci 98:640–650CrossRef
go back to reference Schäfer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443CrossRef Schäfer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443CrossRef
go back to reference Schubert MA, Müller-Goymann CC (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles—evaluation of the method and process parameters. Eur J Pharm Biopharm 55:125–131CrossRef Schubert MA, Müller-Goymann CC (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles—evaluation of the method and process parameters. Eur J Pharm Biopharm 55:125–131CrossRef
go back to reference Sebti T, Amighi K (2006) Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm 63:51–58CrossRef Sebti T, Amighi K (2006) Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm 63:51–58CrossRef
go back to reference Severino P, Santana MHA, Souto EB (2012) Optimizing LNP and NLC by 22 full factorial design: effect of homogenization technique. Mater Eng C 32:1375–1379CrossRef Severino P, Santana MHA, Souto EB (2012) Optimizing LNP and NLC by 22 full factorial design: effect of homogenization technique. Mater Eng C 32:1375–1379CrossRef
go back to reference Sinha VR, Srivastava S, Goel H, Jindal V (2010) Solid lipid nanoparticles (SLN’S)—trends and implications in drug targeting. Int J Adv Pharm Sci 1:212–238 Sinha VR, Srivastava S, Goel H, Jindal V (2010) Solid lipid nanoparticles (SLN’S)—trends and implications in drug targeting. Int J Adv Pharm Sci 1:212–238
go back to reference Sjöstrom B, Bergenstahl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions: I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 84:107–116CrossRef Sjöstrom B, Bergenstahl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions: I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 84:107–116CrossRef
go back to reference Souto EB, Müller RH (2006) Investigation of the factors influencing the incorporation of clotrimazole in LNP and NLC prepared by hot high-pressure homogenization. J Microencapsul 23:377–388CrossRef Souto EB, Müller RH (2006) Investigation of the factors influencing the incorporation of clotrimazole in LNP and NLC prepared by hot high-pressure homogenization. J Microencapsul 23:377–388CrossRef
go back to reference Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N (2009) Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization beta-carotene and alpha-tocopherol. Colloids Surf B 72:181–187CrossRef Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N (2009) Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization beta-carotene and alpha-tocopherol. Colloids Surf B 72:181–187CrossRef
go back to reference Trotta M, Debernardi F, Caputo O (2003) Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm 257:153–160CrossRef Trotta M, Debernardi F, Caputo O (2003) Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm 257:153–160CrossRef
go back to reference Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F (2010) Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J Liposome Res 20:97–104CrossRef Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F (2010) Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J Liposome Res 20:97–104CrossRef
go back to reference Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AACC (2011) The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B 84:117–130CrossRef Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AACC (2011) The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B 84:117–130CrossRef
go back to reference Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349CrossRef Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349CrossRef
go back to reference Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24:12758–12765CrossRef Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24:12758–12765CrossRef
go back to reference Zur Mühlen A, Mehnert W (1998) Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie 53:552–555 Zur Mühlen A, Mehnert W (1998) Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie 53:552–555
go back to reference Zur Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (LNP) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45:149–155CrossRef Zur Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (LNP) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45:149–155CrossRef
Metadata
Title
Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach
Authors
Matilde Durán-Lobato
Alicia Enguix-González
Mercedes Fernández-Arévalo
Lucía Martín-Banderas
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 2/2013
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1443-6

Other articles of this Issue 2/2013

Journal of Nanoparticle Research 2/2013 Go to the issue

Premium Partners