Skip to main content
Top

2025 | OriginalPaper | Chapter

5. Statistical Assessment of Diagnostic Parameters

Authors : Vitalii Babak, Sergii Babak, Artur Zaporozhets

Published in: Statistical Diagnostics of Electric Power Equipment

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a comprehensive exploration of statistical methods for the estimation and analysis of diagnostic signals in a variety of contexts, ranging from spectral analysis to parameter estimation and hypothesis testing. Beginning with numerical parameters of diagnostic signals, the discussion extends to spectral correlation analysis, focusing on the calculation of moments, the power spectral density, and the correlation function from signal samples. The utilization of the Goertzel algorithm for efficient spectral density estimation highlights the chapter's contribution to spectral analysis techniques. Further, the application of Pearson's system of curves for empirical data distribution approximation underscores the chapter’s innovative approach to statistical analysis. The extract also delves into stationarity testing methods (F-test, t-test, and Kolmogorov–Smirnov test) critical for diagnostic reliability and defect identification, illustrating the chapter's diagnostic focus. In addressing statistical hypothesis testing, the chapter introduces a method based on the maximum likelihood principle for distinguishing hypotheses about the parameters of a multidimensional Gaussian distribution, demonstrating the chapter's depth in statistical methodology. Lastly, it explores the use of the Neyman-Pearson criterion in planning diagnostic tests, offering a practical framework for hypothesis distinction regarding system states. This exploration underscores the chapter’s significant contribution to both the theoretical and practical aspects of diagnostic signal analysis, providing valuable insights and methods for researchers and practitioners in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef
2.
go back to reference Eremenko, V., Zaporozhets, A., Isaienko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019) Eremenko, V., Zaporozhets, A., Isaienko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019)
3.
go back to reference Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 48–51. IEEE (2018) Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 48–51. IEEE (2018)
4.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Technical provision of diagnostic systems. Diagnostic Syst. Energy Equipm. 91–133 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Technical provision of diagnostic systems. Diagnostic Syst. Energy Equipm. 91–133 (2020)
5.
go back to reference Furse, C.M., Kafal, M., Razzaghi, R., Shin, Y.J.: Fault diagnosis for electrical systems and power networks: a review. IEEE Sens. J. 21(2), 888–906 (2020)CrossRef Furse, C.M., Kafal, M., Razzaghi, R., Shin, Y.J.: Fault diagnosis for electrical systems and power networks: a review. IEEE Sens. J. 21(2), 888–906 (2020)CrossRef
6.
go back to reference Gyzhko, Y., Myslovych, M., Sysak, R.: To use of spectral windows in analysis of vibration signals. Przeglad Electrotechnichny 89(2A), 294–296 (2013) Gyzhko, Y., Myslovych, M., Sysak, R.: To use of spectral windows in analysis of vibration signals. Przeglad Electrotechnichny 89(2A), 294–296 (2013)
7.
go back to reference Tytarenko, V., Tychkov, D., Bilokin, S., Bondarenko, M., Andriienko, V.: Development of a simulation model of an information-measuring system of electrical characteristics of the functional coatings of electronic devices. Math. Model. 4(2), 68–71 (2020) Tytarenko, V., Tychkov, D., Bilokin, S., Bondarenko, M., Andriienko, V.: Development of a simulation model of an information-measuring system of electrical characteristics of the functional coatings of electronic devices. Math. Model. 4(2), 68–71 (2020)
8.
go back to reference Tymchuk, S.O., Abramenko, I.G., Zahumenna, K.V., Miroshnyk, O.O., Shchur, T.G., Tomporowski, A., Kruszelnicka, W.: Determination of the discretion interval of the temporal series of the technological process parameter measurement in ACS TP in the noises conditions. In Journal of Physics: Conference Series, vol. 1781, No. 1, p. 012017. IOP Publishing (2021) Tymchuk, S.O., Abramenko, I.G., Zahumenna, K.V., Miroshnyk, O.O., Shchur, T.G., Tomporowski, A., Kruszelnicka, W.: Determination of the discretion interval of the temporal series of the technological process parameter measurement in ACS TP in the noises conditions. In Journal of Physics: Conference Series, vol. 1781, No. 1, p. 012017. IOP Publishing (2021)
9.
go back to reference Tempelman, A.: Generalization of the Glivenko-Cantelli theorem to finite-dimensional distributions of ergodic homogeneous random fields. Statist. Probab. Lett. 195, 109767 (2023)MathSciNetCrossRef Tempelman, A.: Generalization of the Glivenko-Cantelli theorem to finite-dimensional distributions of ergodic homogeneous random fields. Statist. Probab. Lett. 195, 109767 (2023)MathSciNetCrossRef
10.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022) Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022)
11.
go back to reference Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021) Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021)
12.
go back to reference Khanıev, T.A., Unver, İ., Maden, S.: On the semi-Markovian random walk with two reflecting barriers (2001) Khanıev, T.A., Unver, İ., Maden, S.: On the semi-Markovian random walk with two reflecting barriers (2001)
13.
go back to reference Liu, T., Zhang, B., Hu, G., Bai, Z.: Revisit of Sheppard corrections in linear regression. SCIENCE CHINA Math. 53, 1435–1451 (2010)MathSciNetCrossRef Liu, T., Zhang, B., Hu, G., Bai, Z.: Revisit of Sheppard corrections in linear regression. SCIENCE CHINA Math. 53, 1435–1451 (2010)MathSciNetCrossRef
14.
go back to reference Stuart, A., Ord, K.: Kendall's advanced theory of statistics, distribution theory, vol. 1. John Wiley & Sons (2010) Stuart, A., Ord, K.: Kendall's advanced theory of statistics, distribution theory, vol. 1. John Wiley & Sons (2010)
15.
go back to reference Lal-Jadziak, J.: Accuracy in determination of correlation functions by digital methods. Metrol. Measur. Syst. 8(2), 153–163 (2001) Lal-Jadziak, J.: Accuracy in determination of correlation functions by digital methods. Metrol. Measur. Syst. 8(2), 153–163 (2001)
16.
go back to reference Murray, L.L., Bellhouse, D.R.: WF Sheppard’s correspondence with Karl Pearson and the development of his tables and moment estimates. Hist. Math. 53, 108–117 (2020)CrossRef Murray, L.L., Bellhouse, D.R.: WF Sheppard’s correspondence with Karl Pearson and the development of his tables and moment estimates. Hist. Math. 53, 108–117 (2020)CrossRef
17.
go back to reference La ïb, N., & Ould-Sa ÏD, E.: A robust nonparametric estimation of the autoregression function under an ergodic hypothesis. Canad. J. Statist. 28(4), 817–828 (2000)MathSciNetCrossRef La ïb, N., & Ould-Sa ÏD, E.: A robust nonparametric estimation of the autoregression function under an ergodic hypothesis. Canad. J. Statist. 28(4), 817–828 (2000)MathSciNetCrossRef
18.
go back to reference Higgins, C.W., Katul, G.G., Froidevaux, M., Simeonov, V., Parlange, M.B.: Are atmospheric surface layer flows ergodic? Geophys. Res. Lett. 40(12), 3342–3346 (2013)CrossRef Higgins, C.W., Katul, G.G., Froidevaux, M., Simeonov, V., Parlange, M.B.: Are atmospheric surface layer flows ergodic? Geophys. Res. Lett. 40(12), 3342–3346 (2013)CrossRef
19.
go back to reference Loh, I. Approximation with ergodic processes and testability. J. Appl. Probabil. 1–20 (2024) Loh, I. Approximation with ergodic processes and testability. J. Appl. Probabil. 1–20 (2024)
20.
go back to reference Zhao, H., Wu, Z.: Statistical Estimation of Uncertainty in Surface Duct Parameters Inversion. In: 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), pp. 1–4. IEEE (2018) Zhao, H., Wu, Z.: Statistical Estimation of Uncertainty in Surface Duct Parameters Inversion. In: 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), pp. 1–4. IEEE (2018)
21.
go back to reference Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April, pp. 15–19 (2019) Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April, pp. 15–19 (2019)
22.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef
23.
go back to reference Ruzgas, T., Lukauskas, M., Čepkauskas, G.: Nonparametric multivariate density estimation: case study of cauchy mixture model. Mathematics 9(21), 2717 (2021)CrossRef Ruzgas, T., Lukauskas, M., Čepkauskas, G.: Nonparametric multivariate density estimation: case study of cauchy mixture model. Mathematics 9(21), 2717 (2021)CrossRef
24.
go back to reference Kaipio, J.P., Somersalo, E.: Statistical inversion theory. Statistical Comput. Inverse Probl. 49–114 (2005) Kaipio, J.P., Somersalo, E.: Statistical inversion theory. Statistical Comput. Inverse Probl. 49–114 (2005)
25.
go back to reference Lupenko, S.A., Osukhivska, H.M., Lutsyk, N.S., Stadnyk, N.B., Zozulia, A.M., Shablii, N.R.: The comparative analysis of mathematical models of cyclic signals structure and processes. Sci. J. TNTU 82(2), 115–127 (2016) Lupenko, S.A., Osukhivska, H.M., Lutsyk, N.S., Stadnyk, N.B., Zozulia, A.M., Shablii, N.R.: The comparative analysis of mathematical models of cyclic signals structure and processes. Sci. J. TNTU 82(2), 115–127 (2016)
26.
go back to reference Lupenko, S.: The mathematical model of cyclic signals in dynamic systems as a cyclically correlated random process. Mathematics 10(18), 3406 (2022)CrossRef Lupenko, S.: The mathematical model of cyclic signals in dynamic systems as a cyclically correlated random process. Mathematics 10(18), 3406 (2022)CrossRef
27.
28.
go back to reference Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023)
29.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for the diagnosis of electric power equipment. Models Meas. Measurem. Monit. 99–126 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for the diagnosis of electric power equipment. Models Meas. Measurem. Monit. 99–126 (2021)
30.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. Diagn. Syst. Energy Equipments 23–70 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. Diagn. Syst. Energy Equipments 23–70 (2020)
31.
go back to reference Burdzik, R., Konieczny, Ł.: Diagnosing of shock-absorbers of car vehicles at changeable pressure in tires. Diagnostyka, 27–32 (2009) Burdzik, R., Konieczny, Ł.: Diagnosing of shock-absorbers of car vehicles at changeable pressure in tires. Diagnostyka, 27–32 (2009)
32.
go back to reference Cholewa, W., Korbicz, J., Moczulski, W., Timofiejczuk, A.: Methods of signal analysis. Fault Diagnosis: Models, Artif. Intell. Appl. 119–153 (2004) Cholewa, W., Korbicz, J., Moczulski, W., Timofiejczuk, A.: Methods of signal analysis. Fault Diagnosis: Models, Artif. Intell. Appl. 119–153 (2004)
33.
go back to reference Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press (2011)CrossRef Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press (2011)CrossRef
34.
go back to reference Xu, Y., Hespanha, J.P.: Estimation under uncontrolled and controlled communications in networked control systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 842–847. IEEE (2005) Xu, Y., Hespanha, J.P.: Estimation under uncontrolled and controlled communications in networked control systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 842–847. IEEE (2005)
35.
go back to reference Hurd, H.L., Miamee, A.: Periodically Correlated Random Sequences: Spectral Theory and Practice, vol. 355. John Wiley & Sons (2007) Hurd, H.L., Miamee, A.: Periodically Correlated Random Sequences: Spectral Theory and Practice, vol. 355. John Wiley & Sons (2007)
36.
go back to reference Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef
37.
go back to reference Lucor, D., Su, C.H., Karniadakis, G.E.: Generalized polynomial chaos and random oscillators. Int. J. Numer. Meth. Eng. 60(3), 571–596 (2004)MathSciNetCrossRef Lucor, D., Su, C.H., Karniadakis, G.E.: Generalized polynomial chaos and random oscillators. Int. J. Numer. Meth. Eng. 60(3), 571–596 (2004)MathSciNetCrossRef
38.
go back to reference Gray, R.M., Davisson, L.D.: An Introduction to Statistical Signal Processing. Cambridge University Press (2004)CrossRef Gray, R.M., Davisson, L.D.: An Introduction to Statistical Signal Processing. Cambridge University Press (2004)CrossRef
39.
go back to reference Randall, R.B., Antoni, J., Chobsaard, S.: The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech. Syst. Signal Process. 15(5), 945–962 (2001)CrossRef Randall, R.B., Antoni, J., Chobsaard, S.: The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech. Syst. Signal Process. 15(5), 945–962 (2001)CrossRef
40.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. Diagnostic Syst. Energy Equipments 71–90 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. Diagnostic Syst. Energy Equipments 71–90 (2020)
41.
go back to reference Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Conference on Computer Science and Information Technologies, pp. 154–172. Springer International Publishing, Cham (2019) Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Conference on Computer Science and Information Technologies, pp. 154–172. Springer International Publishing, Cham (2019)
42.
go back to reference Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer Science & Business Media (2006) Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer Science & Business Media (2006)
43.
go back to reference Antoni, J., Randall, R.B.: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20(2), 308–331 (2006)CrossRef Antoni, J., Randall, R.B.: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20(2), 308–331 (2006)CrossRef
44.
go back to reference Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)CrossRef Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)CrossRef
45.
go back to reference Li, Y.Y., Lee, Y.W., Ho, T.S., Wei, R.T., Lai, P.Y., Jao, K.S., Huang, S.L.: Interferometry based EUV spectrometer. IEEE Photonics J. 9(4), 1–8 (2017) Li, Y.Y., Lee, Y.W., Ho, T.S., Wei, R.T., Lai, P.Y., Jao, K.S., Huang, S.L.: Interferometry based EUV spectrometer. IEEE Photonics J. 9(4), 1–8 (2017)
46.
go back to reference Marwan, N., Braun, T.: Power spectral estimate for discrete data. Chaos: an Interdisciplinary J. Nonlinear Sci. 33(5) (2023) Marwan, N., Braun, T.: Power spectral estimate for discrete data. Chaos: an Interdisciplinary J. Nonlinear Sci. 33(5) (2023)
47.
go back to reference Verma, N.K., Singh, S., Gupta, J.K., Sevakula, R.K., Dixit, S., Salour, A.: Smartphone application for fault recognition. In: 2012 Sixth International Conference on Sensing Technology (ICST), pp. 1–6. IEEE (2012) Verma, N.K., Singh, S., Gupta, J.K., Sevakula, R.K., Dixit, S., Salour, A.: Smartphone application for fault recognition. In: 2012 Sixth International Conference on Sensing Technology (ICST), pp. 1–6. IEEE (2012)
48.
go back to reference Torcal-Milla, F.J., Lobera, J., Lopez, A.M., Palero, V., Andres, N., Arroyo, M.P.: Mach-Zehnder-based measurement of light emitting diodes temporal coherence. Optik 267, 169722 (2022)CrossRef Torcal-Milla, F.J., Lobera, J., Lopez, A.M., Palero, V., Andres, N., Arroyo, M.P.: Mach-Zehnder-based measurement of light emitting diodes temporal coherence. Optik 267, 169722 (2022)CrossRef
49.
go back to reference Tomashin, A., Leonardi, G., Wallot, S.: Four methods to distinguish between fractal dimensions in time series through recurrence quantification analysis. Entropy 24(9), 1314 (2022)MathSciNetCrossRef Tomashin, A., Leonardi, G., Wallot, S.: Four methods to distinguish between fractal dimensions in time series through recurrence quantification analysis. Entropy 24(9), 1314 (2022)MathSciNetCrossRef
50.
go back to reference Newland, D.E.: An introduction to random vibrations, spectral and wavelet analysis. Courier Corporation (2012) Newland, D.E.: An introduction to random vibrations, spectral and wavelet analysis. Courier Corporation (2012)
51.
go back to reference Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press (2020) Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press (2020)
52.
go back to reference Crandall, S.H., Mark, W.D.: Random vibration in mechanical systems. Academic Press (2014) Crandall, S.H., Mark, W.D.: Random vibration in mechanical systems. Academic Press (2014)
53.
go back to reference Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. John Wiley & Sons (2011) Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. John Wiley & Sons (2011)
55.
go back to reference Stoica, P., Li, J., He, H.: Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram. IEEE Trans. Signal Process. 57(3), 843–858 (2008)MathSciNetCrossRef Stoica, P., Li, J., He, H.: Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram. IEEE Trans. Signal Process. 57(3), 843–858 (2008)MathSciNetCrossRef
56.
go back to reference Li, T.H.: A robust periodogram for high-resolution spectral analysis. Signal Process. 90(7), 2133–2140 (2010)CrossRef Li, T.H.: A robust periodogram for high-resolution spectral analysis. Signal Process. 90(7), 2133–2140 (2010)CrossRef
57.
go back to reference Akin, M., Kiymik, M.K.: Application of periodogram and AR spectral analysis to EEG signals. J. Med. Syst. 24, 247–256 (2000)CrossRef Akin, M., Kiymik, M.K.: Application of periodogram and AR spectral analysis to EEG signals. J. Med. Syst. 24, 247–256 (2000)CrossRef
58.
go back to reference Candan, C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000)MathSciNetCrossRef Candan, C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000)MathSciNetCrossRef
59.
go back to reference Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef
60.
go back to reference Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef
61.
go back to reference CusidÓCusido, J., Romeral, L., Ortega, J.A., Rosero, J.A., Espinosa, A.G.: Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Trans. Industr. Electron. 55(2), 633–643 (2008)CrossRef CusidÓCusido, J., Romeral, L., Ortega, J.A., Rosero, J.A., Espinosa, A.G.: Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Trans. Industr. Electron. 55(2), 633–643 (2008)CrossRef
62.
go back to reference Polat, K., Güneş, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)MathSciNet Polat, K., Güneş, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)MathSciNet
63.
go back to reference Shirbhate, R., Panse, T., Ralekar, C.: Design of parallel FFT architecture using cooley Tukey algorithm. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0574–0578. IEEE (2015) Shirbhate, R., Panse, T., Ralekar, C.: Design of parallel FFT architecture using cooley Tukey algorithm. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0574–0578. IEEE (2015)
64.
go back to reference Ratnam, D.V., Pasha, A., Swathi, P., Rao, M.V.G.: Acquisition of GPS L1 signals using Cooley-tukey FFT algorithm. In: 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC), pp. 1–4. IEEE (2013) Ratnam, D.V., Pasha, A., Swathi, P., Rao, M.V.G.: Acquisition of GPS L1 signals using Cooley-tukey FFT algorithm. In: 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC), pp. 1–4. IEEE (2013)
65.
go back to reference Voronenko, Y., Puschel, M.: Algebraic signal processing theory: cooley-Tukey type algorithms for real DFTs. IEEE Trans. Signal Process. 57(1), 205–222 (2008)MathSciNetCrossRef Voronenko, Y., Puschel, M.: Algebraic signal processing theory: cooley-Tukey type algorithms for real DFTs. IEEE Trans. Signal Process. 57(1), 205–222 (2008)MathSciNetCrossRef
66.
go back to reference Abbaci, M., & Zmirli, M.O.: Performance evaluation of PMU using modified cooley-tukey algorithm based on GDFT. In: 2018 International Conference on Applied Smart Systems (ICASS), pp. 1–6. IEEE (2018) Abbaci, M., & Zmirli, M.O.: Performance evaluation of PMU using modified cooley-tukey algorithm based on GDFT. In: 2018 International Conference on Applied Smart Systems (ICASS), pp. 1–6. IEEE (2018)
67.
go back to reference Püschel, M., Rtteler, M.: Algebraic signal processing theory: cooley-Tukey type algorithms on the 2-D hexagonal spatial lattice. Appl. Algebra Eng. Commun. Comput. 19(3), 259–292 (2008)MathSciNetCrossRef Püschel, M., Rtteler, M.: Algebraic signal processing theory: cooley-Tukey type algorithms on the 2-D hexagonal spatial lattice. Appl. Algebra Eng. Commun. Comput. 19(3), 259–292 (2008)MathSciNetCrossRef
68.
go back to reference Li, C., Du, P., Li, K., Liu, Y., Jiang, H., Quan, Z.: Accurate goertzel algorithm: error analysis, validations and applications. Mathematics 10(11), 1788 (2022)CrossRef Li, C., Du, P., Li, K., Liu, Y., Jiang, H., Quan, Z.: Accurate goertzel algorithm: error analysis, validations and applications. Mathematics 10(11), 1788 (2022)CrossRef
69.
go back to reference Sysel, P., Rajmic, P.: Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Proc. 2012, 1–8 (2012) Sysel, P., Rajmic, P.: Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J. Adv. Signal Proc. 2012, 1–8 (2012)
70.
go back to reference Chen, H., Chen, G., Li, J.: The generalized Goertzel algorithm and its parallel hardware implementation. Sci China Ser A Math 51(1), 37–41 (2008)MathSciNetCrossRef Chen, H., Chen, G., Li, J.: The generalized Goertzel algorithm and its parallel hardware implementation. Sci China Ser A Math 51(1), 37–41 (2008)MathSciNetCrossRef
71.
go back to reference Brown, S., Timoney, J., Lysaght, T.: An evaluation of the Goertzel Algorithm for low-power, embedded systems. In: 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), pp. 357–361. IET (2014) Brown, S., Timoney, J., Lysaght, T.: An evaluation of the Goertzel Algorithm for low-power, embedded systems. In: 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), pp. 357–361. IET (2014)
72.
go back to reference Dabrowski, A., Marciniak, T.: Canonic Goertzel algorithm and drawbacks of various Goertzel algorithm formulations. In: 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 259–262. IEEE (2017) Dabrowski, A., Marciniak, T.: Canonic Goertzel algorithm and drawbacks of various Goertzel algorithm formulations. In: 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 259–262. IEEE (2017)
73.
go back to reference Forbes, C., Evans, M., Hastings, N., Peacock, B.: Statistical distributions. John Wiley & Sons (2011) Forbes, C., Evans, M., Hastings, N., Peacock, B.: Statistical distributions. John Wiley & Sons (2011)
74.
go back to reference Cordeiro, G.M., de Castro, M.: A new family of generalized distributions. J. Stat. Comput. Simul. 81(7), 883–898 (2011)MathSciNetCrossRef Cordeiro, G.M., de Castro, M.: A new family of generalized distributions. J. Stat. Comput. Simul. 81(7), 883–898 (2011)MathSciNetCrossRef
75.
go back to reference Watanabe, T.: Convolution equivalence and distributions of random sums. Probab. Theory Relat. Fields 142, 367–397 (2008)MathSciNetCrossRef Watanabe, T.: Convolution equivalence and distributions of random sums. Probab. Theory Relat. Fields 142, 367–397 (2008)MathSciNetCrossRef
76.
go back to reference Devroye, L.: Nonuniform random variate generation. Handbooks Oper. Res. Manage. Sci. 13, 83–121 (2006)CrossRef Devroye, L.: Nonuniform random variate generation. Handbooks Oper. Res. Manage. Sci. 13, 83–121 (2006)CrossRef
77.
78.
go back to reference Chakraborty, T., Das, S., Chattopadhyay, S.: A new method for generalizing burr and related distributions. Math. Slovaca 72(1), 241–264 (2022)MathSciNetCrossRef Chakraborty, T., Das, S., Chattopadhyay, S.: A new method for generalizing burr and related distributions. Math. Slovaca 72(1), 241–264 (2022)MathSciNetCrossRef
79.
go back to reference Pawlas, P., Szynal, D.: Recurrence relations for single and product moments of generalized order statistics from Pareto, generalized Pareto, and Burr distributions. Commun. Stat.-Theo. Methods 30(4), 739–746 (2001)MathSciNetCrossRef Pawlas, P., Szynal, D.: Recurrence relations for single and product moments of generalized order statistics from Pareto, generalized Pareto, and Burr distributions. Commun. Stat.-Theo. Methods 30(4), 739–746 (2001)MathSciNetCrossRef
80.
go back to reference Jamal, F., Abuzaid, A.H., Tahir, M.H., Nasir, M.A., Khan, S., Mashwani, W.K.: New modified burr iii distribution, properties and applications. Math. Comput. Appl. 26(4), 82 (2021) Jamal, F., Abuzaid, A.H., Tahir, M.H., Nasir, M.A., Khan, S., Mashwani, W.K.: New modified burr iii distribution, properties and applications. Math. Comput. Appl. 26(4), 82 (2021)
81.
go back to reference Nadarajah, S., Pogány, T.K., Saxena, R.K.: On the characteristic function for Burr distributions. Statistics 46(3), 419–428 (2012)MathSciNetCrossRef Nadarajah, S., Pogány, T.K., Saxena, R.K.: On the characteristic function for Burr distributions. Statistics 46(3), 419–428 (2012)MathSciNetCrossRef
82.
go back to reference Borroni, C.G.: Understanding Karl Pearson’s influence on Italian statistics in the early 20th century. Int. Stat. Rev. 77(1), 81–95 (2009)MathSciNetCrossRef Borroni, C.G.: Understanding Karl Pearson’s influence on Italian statistics in the early 20th century. Int. Stat. Rev. 77(1), 81–95 (2009)MathSciNetCrossRef
83.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. Models Meas. Meas. Monit. 1–31 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. Models Meas. Meas. Monit. 1–31 (2021)
84.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. Diagnost. Syst. Energy Equip. 1–22 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. Diagnost. Syst. Energy Equip. 1–22 (2020)
85.
go back to reference Xiong, Q., Du, P., Deng, J., Huang, D., Song, G., Qian, L., Luo, Y.: Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs. Reliab. Eng. Syst. Saf. 221, 108337 (2022)CrossRef Xiong, Q., Du, P., Deng, J., Huang, D., Song, G., Qian, L., Luo, Y.: Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs. Reliab. Eng. Syst. Saf. 221, 108337 (2022)CrossRef
86.
go back to reference Pearson, K.: Mathematical contributions to the theory of evolution on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. Royal Soc. london, 60(359–367), 489–498 (1897) Pearson, K.: Mathematical contributions to the theory of evolution on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. Royal Soc. london, 60(359–367), 489–498 (1897)
87.
go back to reference Pearson, K.: Contributions to the mathematical theory of evolution. Philosoph. Trans. Royal Soc. London. A, 185, 71–110 (1894) Pearson, K.: Contributions to the mathematical theory of evolution. Philosoph. Trans. Royal Soc. London. A, 185, 71–110 (1894)
88.
go back to reference Pearson, K.: I. Mathematical contributions to the theory of evolution.—VII. On the correlation of characters not quantitatively measurable. Philosophical Trans. Royal Soc. London. Series A, Containing Papers of a Mathematical or Physical Character, 195(262–273), 1–47 (1900) Pearson, K.: I. Mathematical contributions to the theory of evolution.—VII. On the correlation of characters not quantitatively measurable. Philosophical Trans. Royal Soc. London. Series A, Containing Papers of a Mathematical or Physical Character, 195(262–273), 1–47 (1900)
89.
go back to reference Zvarich, V.N., Marchenko, B.G.: Linear autoregressive processes with periodic structures as models of information signals. Radioelectron. Commun. Syst. 54(7), 367–372 (2011)CrossRef Zvarich, V.N., Marchenko, B.G.: Linear autoregressive processes with periodic structures as models of information signals. Radioelectron. Commun. Syst. 54(7), 367–372 (2011)CrossRef
90.
go back to reference Marchenko, B.G., Tkachuk, R.A., Palamar, M.I.: Harmonic analysis using in human visual system diagnosnics by means of elektroretinograms identification. In: Pattern recognition and information processing (1997) Marchenko, B.G., Tkachuk, R.A., Palamar, M.I.: Harmonic analysis using in human visual system diagnosnics by means of elektroretinograms identification. In: Pattern recognition and information processing (1997)
91.
go back to reference Guzii, V.I., Marchenko, B.G., Protsenko, L.D.: Transformations providing for detection invariance with changes in the spectral parameters of low-frequency noise. Radioehlektronika 28, 3–10 (1985) Guzii, V.I., Marchenko, B.G., Protsenko, L.D.: Transformations providing for detection invariance with changes in the spectral parameters of low-frequency noise. Radioehlektronika 28, 3–10 (1985)
92.
go back to reference Marchenko, B., Shcherbak, L.: 1975, p. 144. Naukova Dumka, Linear random processes and their applications. Kyiv (1975) Marchenko, B., Shcherbak, L.: 1975, p. 144. Naukova Dumka, Linear random processes and their applications. Kyiv (1975)
93.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models of measuring signals and fields. Models Meas. Measurements Monit. 33–59 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models of measuring signals and fields. Models Meas. Measurements Monit. 33–59 (2021)
94.
go back to reference Smyth, G.K.: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Molecular Biol. 3(1) (2004) Smyth, G.K.: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Molecular Biol. 3(1) (2004)
95.
go back to reference Dobson, A.J., Barnett, A.G.: An Introduction to Generalized Linear Models. Chapman and Hall/CRC (2018) Dobson, A.J., Barnett, A.G.: An Introduction to Generalized Linear Models. Chapman and Hall/CRC (2018)
96.
go back to reference Hommel, G.: Adaptive modifications of hypotheses after an interim analysis. Biomet. J.: J. Mathemat. Methods Biosci. 43(5), 581–589 (2001)MathSciNetCrossRef Hommel, G.: Adaptive modifications of hypotheses after an interim analysis. Biomet. J.: J. Mathemat. Methods Biosci. 43(5), 581–589 (2001)MathSciNetCrossRef
97.
go back to reference Székely, G.J., Rizzo, M.L.: Testing for Equal Distributions in High Dimension. InterStat, 5(16.10), 1249–1272 (2004) Székely, G.J., Rizzo, M.L.: Testing for Equal Distributions in High Dimension. InterStat, 5(16.10), 1249–1272 (2004)
98.
go back to reference Manoukian, E.B.: Modern Concepts and Theorems of Mathematical Statistics. Springer Science & Business Media (2012) Manoukian, E.B.: Modern Concepts and Theorems of Mathematical Statistics. Springer Science & Business Media (2012)
99.
go back to reference Dodge, Y.: The Concise Encyclopedia of Statistics. Springer Science & Business Media (2008) Dodge, Y.: The Concise Encyclopedia of Statistics. Springer Science & Business Media (2008)
100.
go back to reference Haeusler, E.H.: How many times do we need an assumption to prove a tautology in minimal logic? examples on the compression power of classical reasoning. Electron. Notes Theoret. Comput. Sci. 315, 31–46 (2015)MathSciNetCrossRef Haeusler, E.H.: How many times do we need an assumption to prove a tautology in minimal logic? examples on the compression power of classical reasoning. Electron. Notes Theoret. Comput. Sci. 315, 31–46 (2015)MathSciNetCrossRef
101.
go back to reference Kesner, D., Viana, P.: Proceedings seventh workshop on logical and semantic frameworks, with applications (2013). ArXiv preprint arXiv:1303.7136. Kesner, D., Viana, P.: Proceedings seventh workshop on logical and semantic frameworks, with applications (2013). ArXiv preprint arXiv:​1303.​7136.
102.
go back to reference Drago, A.: The birth of the non-Euclidean geometries as the more significant crisis in the foundations of modern mathematics. Logic Philos Sci 9(1), 103–110 (2011) Drago, A.: The birth of the non-Euclidean geometries as the more significant crisis in the foundations of modern mathematics. Logic Philos Sci 9(1), 103–110 (2011)
103.
go back to reference Schmidt-Hieber, J.: The Kolmogorov-Arnold representation theorem revisited. Neural Netw. 137, 119–126 (2021)CrossRef Schmidt-Hieber, J.: The Kolmogorov-Arnold representation theorem revisited. Neural Netw. 137, 119–126 (2021)CrossRef
104.
go back to reference Köppen, M.: On the training of a kolmogorov network. In: Artificial Neural Networks—ICANN 2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–479. Springer Berlin Heidelberg (2002) Köppen, M.: On the training of a kolmogorov network. In: Artificial Neural Networks—ICANN 2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–479. Springer Berlin Heidelberg (2002)
105.
go back to reference Arnold, V.I.: Proof of a theorem of AN Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Collected Works: Representations of Functions, Celestial Mechanics and KAM Theory 1957–1965, 267–294 (2009)CrossRef Arnold, V.I.: Proof of a theorem of AN Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Collected Works: Representations of Functions, Celestial Mechanics and KAM Theory 1957–1965, 267–294 (2009)CrossRef
106.
go back to reference Rassokhin, D.N., Agrafiotis, D.K.: Kolmogorov-Smirnov statistic and its application in library design. J. Mol. Graph. Model. 18(4–5), 368–382 (2000)CrossRef Rassokhin, D.N., Agrafiotis, D.K.: Kolmogorov-Smirnov statistic and its application in library design. J. Mol. Graph. Model. 18(4–5), 368–382 (2000)CrossRef
107.
go back to reference Greenwell, R.N., Finch, S.J.: Randomized rejection procedure for the two-sample Kolmogorov-Smirnov statistic. Comput. Stat. Data Anal. 46(2), 257–267 (2004)MathSciNetCrossRef Greenwell, R.N., Finch, S.J.: Randomized rejection procedure for the two-sample Kolmogorov-Smirnov statistic. Comput. Stat. Data Anal. 46(2), 257–267 (2004)MathSciNetCrossRef
108.
go back to reference Nguyen, H.D.: A Two-sample Kolmogorov-Smirnov-like test for big data. In: Data Mining: 15th Australasian Conference, AusDM 2017, Melbourne, VIC, Australia, August 19–20, 2017, Revised Selected Papers 15, pp. 89–106. Springer Singapore (2018) Nguyen, H.D.: A Two-sample Kolmogorov-Smirnov-like test for big data. In: Data Mining: 15th Australasian Conference, AusDM 2017, Melbourne, VIC, Australia, August 19–20, 2017, Revised Selected Papers 15, pp. 89–106. Springer Singapore (2018)
109.
go back to reference Sverdlova, A., Zaporozhets, A.: Predicting anomaly conditions of energy equipment using neural networks. In: E3S Web of Conferences, vol. 280, p. 09005 (2021) Sverdlova, A., Zaporozhets, A.: Predicting anomaly conditions of energy equipment using neural networks. In: E3S Web of Conferences, vol. 280, p. 09005 (2021)
110.
go back to reference Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using Hilbert transform in diagnostic of composite materials by impedance method. Period. Polytechnica Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using Hilbert transform in diagnostic of composite materials by impedance method. Period. Polytechnica Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef
111.
go back to reference Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna ElektroDynamika 4, 070 (2021)CrossRef Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna ElektroDynamika 4, 070 (2021)CrossRef
112.
go back to reference Babak, V., Bohachev, I., Zaporozhets, A., Khaidurov, V., Havrysh, V., Kalinichenko, A.: Some features of modeling ultrasound propagation in non-destructive control of metal structures based on the magnetostrictive effect. Electronics 12(3), 477 (2023)CrossRef Babak, V., Bohachev, I., Zaporozhets, A., Khaidurov, V., Havrysh, V., Kalinichenko, A.: Some features of modeling ultrasound propagation in non-destructive control of metal structures based on the magnetostrictive effect. Electronics 12(3), 477 (2023)CrossRef
113.
go back to reference Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11 s. In: Systems, Decision and Control in Energy II, pp. 141–151. Springer International Publishing, Cham (2021) Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11 s. In: Systems, Decision and Control in Energy II, pp. 141–151. Springer International Publishing, Cham (2021)
114.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for standardless measurements of the composite materials characteristics. Models Meas. Meas. Monit. 157–190 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for standardless measurements of the composite materials characteristics. Models Meas. Meas. Monit. 157–190 (2021)
115.
go back to reference Bohachev, I., Babak, V., Zaporozhets, A.: Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Tech. Electrodynamics 3, 69–78 (2022) Bohachev, I., Babak, V., Zaporozhets, A.: Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Tech. Electrodynamics 3, 69–78 (2022)
116.
go back to reference Santhakumaran, A.: Fundamentals of Testing Statistical Hypotheses. Atlantic Publishers & Dist (2001) Santhakumaran, A.: Fundamentals of Testing Statistical Hypotheses. Atlantic Publishers & Dist (2001)
117.
go back to reference Holický, M.: Testing of statistical hypotheses. Introduction to Probability and Statistics for Engineers, pp. 125–138 (2013) Holický, M.: Testing of statistical hypotheses. Introduction to Probability and Statistics for Engineers, pp. 125–138 (2013)
118.
go back to reference Kachiashvili, G.K., Kachiashvili, K.J., Mueed, A.: Specific features of regions of acceptance of hypotheses in conditional Bayesian problems of statistical hypotheses testing. Sankhya A 74, 112–125 (2012)MathSciNetCrossRef Kachiashvili, G.K., Kachiashvili, K.J., Mueed, A.: Specific features of regions of acceptance of hypotheses in conditional Bayesian problems of statistical hypotheses testing. Sankhya A 74, 112–125 (2012)MathSciNetCrossRef
119.
go back to reference He, J., Jones, J.W., Graham, W.D., Dukes, M.D.: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric. Syst. 103(5), 256–264 (2010)CrossRef He, J., Jones, J.W., Graham, W.D., Dukes, M.D.: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric. Syst. 103(5), 256–264 (2010)CrossRef
120.
go back to reference Rohde, C.A.: Introductory Statistical Inference with the Likelihood Function. Springer, New York (2014)CrossRef Rohde, C.A.: Introductory Statistical Inference with the Likelihood Function. Springer, New York (2014)CrossRef
121.
go back to reference Li, F., Luan, P.: ARMA model for predicting the number of new outbreaks of newcastle disease during the month. In: 2011 IEEE International Conference on Computer Science and Automation Engineering, vol. 4, pp. 660–663. IEEE (2011) Li, F., Luan, P.: ARMA model for predicting the number of new outbreaks of newcastle disease during the month. In: 2011 IEEE International Conference on Computer Science and Automation Engineering, vol. 4, pp. 660–663. IEEE (2011)
122.
go back to reference Huang, D., Yang, J., Zhou, D., Litak, G., Liu, H.: Influence of Poisson white noise on the response statistics of nonlinear system and its applications to bearing fault diagnosis. J. Comput. Nonlinear Dyn. 14(3), 031010 (2019)CrossRef Huang, D., Yang, J., Zhou, D., Litak, G., Liu, H.: Influence of Poisson white noise on the response statistics of nonlinear system and its applications to bearing fault diagnosis. J. Comput. Nonlinear Dyn. 14(3), 031010 (2019)CrossRef
123.
go back to reference Guo, S.L., Yang, Y.G., Sun, Y.H.: Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation. Chaos Solitons Fractals 151, 111231 (2021)MathSciNetCrossRef Guo, S.L., Yang, Y.G., Sun, Y.H.: Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation. Chaos Solitons Fractals 151, 111231 (2021)MathSciNetCrossRef
Metadata
Title
Statistical Assessment of Diagnostic Parameters
Authors
Vitalii Babak
Sergii Babak
Artur Zaporozhets
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-76253-6_5