Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Statistical Computation

Authors : George A. F. Seber, Matthew R. Schofield

Published in: Capture-Recapture: Parameter Estimation for Open Animal Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Capture–recapture has made considerable advances because of progress in the development of extensive computer packages (a list is given in the Appendix). In the past, the emphasis has been on obtaining explicit maximum likelihood estimates and using mathematically derived formulae for asymptotic variances and covariances to obtain standard errors. However, iterative methods are now available for solving maximum likelihood equations and obtaining asymptotic sample variance and covariance estimates. In addition, we have powerful simulation methods which are particularly useful for Bayesian models. In this chapter, written by Matthew Schofield, we give some theory for the numerical process involved as well as simple numerical examples. We start with numerical optimization using the Newton and quasi-Newton algorithms, and then the Hessian matrix for standard errors, with brief reference to multimaxima problems. In using latent (hidden) variable models, the EM (Expectation–maximization) algorithm can be used along with extensions called the SEM (Structural Equation Modeling) and GEM (generalized EM) algorithms. These methods can be applied to hidden Markov models using forward and backward algorithms. Bayesian models require knowledge of the posterior distributions of the parameters and this can be done numerically using Markov chain Monte Carlo (MCMC) to obtain samples from the posterior distributions. Theoretical properties of finite-space Markov chains are discussed along with the Monte Carlo method. The MCMC approach is applied using the Metropolis–Hastings algorithm along with a special case of the Gibbs sampler and making use of the Hammersley–Clifford theorem. Auxiliary latent variables can be used with so-called slice sampling and Hamiltonian Monte Carlo. Since some posterior distributions have variables that can have variable dimensions, methods for transdimensional sampling are described such as the so-called reversible jump MCMC and a universal variable approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
Statistical Computation
Authors
George A. F. Seber
Matthew R. Schofield
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-18187-1_15

Premium Partner