Skip to main content
Top

2025 | OriginalPaper | Chapter

Statistical Evaluation of Machine Learning for Vibration Data

Authors : Samuel Myren, Nidhi Parikh, Garrison Flynn, Dave Higdon, Emily Casleton

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Research in machine learning (ML) for structural health monitoring (SHM) has increased in recent years due to ML’s potential to extract information from large quantities of data collected under varying conditions to make predictions, such as detection, identification, and characterization. Current ML implementation consists of training a model for narrow, task-specific needs, such as training a neural network to detect the presence of structural faults. However, advancements in ML and artificial intelligence (AI) have contributed foundation models—large models trained on broad data in a self-supervised fashion that can be quickly fine-tuned to accomplish specific downstream tasks different from the task it was trained on. For example, a foundation model that is trained for damage detection may be prompted to perform identification and characterization tasks given future data. Because the training and tasking of foundation models are inherently different from current ML implementation, metrics that capture performance while also considering these differences are needed for fair evaluation and comparison between approaches. This research focuses on the testing, evaluation, and benchmarking for foundation models trained on vibration data from ground sensors. We will present metrics that incorporate a broad series of tasks to quantify the performance of foundation models against other traditional ML models. Since the ground vibration data is employed to train and test foundation models for seismic events, the tasks of these models are well aligned with SHM: detecting, identifying, and characterizing acceleration signals or images. The comprehensive evaluation approach and metrics we present will be a step toward holistically quantifying advanced ML/AI success as it inevitably permeates the field of SHM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bommasani, R., Hudson, D.A., Adeli, E., et al.: On the opportunities and risks of foundation models (2022) Bommasani, R., Hudson, D.A., Adeli, E., et al.: On the opportunities and risks of foundation models (2022)
2.
go back to reference Mousavi, S.M., Beroza, G.C.: Deep-learning seismology. Science 377(6607), eabm4470 (2022) Mousavi, S.M., Beroza, G.C.: Deep-learning seismology. Science 377(6607), eabm4470 (2022)
3.
go back to reference Flah, M., Nunez, I., Ben Chaabene, W., Nehdi, M.L.: Machine learning algorithms in civil structural health monitoring: a systematic review. Arch. Comput. Methods Eng. 28(4), 2621–2643 (2021)CrossRef Flah, M., Nunez, I., Ben Chaabene, W., Nehdi, M.L.: Machine learning algorithms in civil structural health monitoring: a systematic review. Arch. Comput. Methods Eng. 28(4), 2621–2643 (2021)CrossRef
4.
go back to reference Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech. Syst. Signal Process. 147, 107077 (2021)CrossRef Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech. Syst. Signal Process. 147, 107077 (2021)CrossRef
5.
go back to reference Harsuko, R., Alkhalifah, T.A.: Storseismic: a new paradigm in deep learning for seismic processing. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)CrossRef Harsuko, R., Alkhalifah, T.A.: Storseismic: a new paradigm in deep learning for seismic processing. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)CrossRef
6.
go back to reference Arrowsmith, S.J., Trugman, D.T., MacCarthy, J., Bergen, K.J., Lumley, D., Magnani, M.B.: Big data seismology. Rev. Geophys. 60(2), e2021RG000769 (2022). e2021RG000769 2021RG000769 Arrowsmith, S.J., Trugman, D.T., MacCarthy, J., Bergen, K.J., Lumley, D., Magnani, M.B.: Big data seismology. Rev. Geophys. 60(2), e2021RG000769 (2022). e2021RG000769 2021RG000769
7.
go back to reference Cano, E.V., Akram, J., Peter, D.B.: Automatic seismic phase picking based on unsupervised machine-learning classification and content information analysis. Geophysics 86(4), V299–V315 (2021)CrossRef Cano, E.V., Akram, J., Peter, D.B.: Automatic seismic phase picking based on unsupervised machine-learning classification and content information analysis. Geophysics 86(4), V299–V315 (2021)CrossRef
8.
go back to reference Fu, J., Wang, X., Li, Z., Meng, H., Wang, J., Wang, W., Tang, C.: Automatic phase-picking method for detecting earthquakes based on the signal-to-noise-ratio concept. Seismol. Res. Lett. 91(1), 334–342 (2019)CrossRef Fu, J., Wang, X., Li, Z., Meng, H., Wang, J., Wang, W., Tang, C.: Automatic phase-picking method for detecting earthquakes based on the signal-to-noise-ratio concept. Seismol. Res. Lett. 91(1), 334–342 (2019)CrossRef
9.
go back to reference Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., Soto, H.: Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. J. Geophys. Res.: Solid Earth 127(1), e2021JB023499 (2022). e2021JB023499 2021JB023499 Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., Soto, H.: Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. J. Geophys. Res.: Solid Earth 127(1), e2021JB023499 (2022). e2021JB023499 2021JB023499
10.
go back to reference Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., Soto, H.: SeisBench—a toolbox for machine learning in seismology. Seismol. Res. Lett. 93(3), 1695–1709 (2022)CrossRef Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., Soto, H.: SeisBench—a toolbox for machine learning in seismology. Seismol. Res. Lett. 93(3), 1695–1709 (2022)CrossRef
11.
go back to reference Mousavi, S.M., Sheng, Y., Zhu, W., Beroza, G.C.: Stanford earthquake dataset (stead): a global data set of seismic signals for AI. IEEE Access 7, 179464–179476 (2019)CrossRef Mousavi, S.M., Sheng, Y., Zhu, W., Beroza, G.C.: Stanford earthquake dataset (stead): a global data set of seismic signals for AI. IEEE Access 7, 179464–179476 (2019)CrossRef
12.
go back to reference Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., Lauciani, V.: Instance – the italian seismic dataset for machine learning. Earth Syst. Sci. Data 13(12), 5509–5544 (2021)CrossRef Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., Lauciani, V.: Instance – the italian seismic dataset for machine learning. Earth Syst. Sci. Data 13(12), 5509–5544 (2021)CrossRef
13.
go back to reference Zhu, W., Beroza, G.C.: PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 216(1), 261–273 (2018) Zhu, W., Beroza, G.C.: PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 216(1), 261–273 (2018)
14.
go back to reference Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 9351. LNCS, pp. 234–241. Springer, Berlin (2015). Available on arXiv:1505.04597 [cs.CV] Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 9351. LNCS, pp. 234–241. Springer, Berlin (2015). Available on arXiv:1505.04597 [cs.CV]
15.
go back to reference Kim, A., Nakamura, Y., Yukutake, Y., Uematsu, H., Abe, Y.: Development of a high-performance seismic phase picker using deep learning in the hakone volcanic area. Earth Planets Space 75(1), 85 (2023)CrossRef Kim, A., Nakamura, Y., Yukutake, Y., Uematsu, H., Abe, Y.: Development of a high-performance seismic phase picker using deep learning in the hakone volcanic area. Earth Planets Space 75(1), 85 (2023)CrossRef
16.
go back to reference Bornstein, T., Lange, D., Münchmeyer, J., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I., Tilmann, F.: Pickblue: seismic phase picking for ocean bottom seismometers with deep learning (2023) Bornstein, T., Lange, D., Münchmeyer, J., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I., Tilmann, F.: Pickblue: seismic phase picking for ocean bottom seismometers with deep learning (2023)
17.
go back to reference Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., Red Hook (2019) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., Red Hook (2019)
18.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
19.
go back to reference Shao, C., Feng, Y.: Overcoming catastrophic forgetting beyond continual learning: balanced training for neural machine translation (2022) Shao, C., Feng, Y.: Overcoming catastrophic forgetting beyond continual learning: balanced training for neural machine translation (2022)
20.
go back to reference Dawid, A.P., Sebastiani, P.: Coherent dispersion criteria for optimal experimental design. Ann. Stat. 27(1), 65–81 (1999)MathSciNetCrossRef Dawid, A.P., Sebastiani, P.: Coherent dispersion criteria for optimal experimental design. Ann. Stat. 27(1), 65–81 (1999)MathSciNetCrossRef
21.
go back to reference Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)MathSciNetCrossRef Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)MathSciNetCrossRef
Metadata
Title
Statistical Evaluation of Machine Learning for Vibration Data
Authors
Samuel Myren
Nidhi Parikh
Garrison Flynn
Dave Higdon
Emily Casleton
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_2