Skip to main content
Top
Published in:

01-12-2016 | Original Article

Statistical mechanics approach for collaborative business social network reconstruction

Authors: Angelo Corallo, Cristian Bisconti, Laura Fortunato, Antonio Andrea Gentile, Piergiuseppe Pellè

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The role of human resources has become a key factor for the success of an organization. Based on a research collaboration with an aeronautical company, the paper compares two different approaches for the reconstruction of a collaborative social network in the business realm. Traditional social network analysis and novel statistical inference models were both evaluated against data provided by the company, with the final scope of scouting key employees in the network, as well as exploiting the knowledge-transfer processes. As a main outcome of this paper, it was found how the network reconstruction using statistical models has an increased robustness, as well as sensitivity, allowing to discover hidden correlations among the users.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
See Sect. 5.1.
 
2
Adopted elsewhere in cited works of SNA literature for the same task.
 
3
This makes it intrinsically more robust than the Bethe approximation, where convergence and uniqueness of the solution are not guaranteed, even if TRW is often outperformed in practical tasks.
 
4
See Sect. 5.1.
 
5
An add-in to the Microsoft Excel 2007 spreadsheet software (http://​nodexl.​codeplex.​com).
 
6
To be intended as those dummy states, associated to inactive users, who are not performing any specific activity when a network observation occurs.
 
7
Assuming a single user cannot perform more than one activity at once.
 
8
And in particular, it is unknown which nodes in the interaction model E are truly linked to each other, i.e. have a non-negligible interaction: \((i,j) \in E \; \iff \; H_{(i,j).} \,\ncong\, 0\).
 
9
And this is indeed the case for the data available in our study, as better explained in the next paragraph.
 
10
Specifically, both 1M and 500k realizations were computed.
 
11
Preserving more links, indeed, leads to the discovery of weak interactions.
 
Literature
go back to reference Bisconti C, Corallo A, Fortunato L, Gentile AA, Massafra A, Pell P (2015) Reconstruction of a real world social network using the Potts model and Loopy Belief Propagation. Front Psychol 6:1698CrossRef Bisconti C, Corallo A, Fortunato L, Gentile AA, Massafra A, Pell P (2015) Reconstruction of a real world social network using the Potts model and Loopy Belief Propagation. Front Psychol 6:1698CrossRef
go back to reference Bordogna CM, Albano EV (2007) Dynamic behavior of a social model for opinion formation. Phys Rev E 76(6):061125CrossRef Bordogna CM, Albano EV (2007) Dynamic behavior of a social model for opinion formation. Phys Rev E 76(6):061125CrossRef
go back to reference Borgatti SP (2012) Social network analysis, two-mode concepts in. In: Computational complexity, Springer, New York, pp 2912–2924 Borgatti SP (2012) Social network analysis, two-mode concepts in. In: Computational complexity, Springer, New York, pp 2912–2924
go back to reference Braunstein A, Pagnani A, Weigt M, Zecchina R (2008) Gene-network inference by message passing. J Phys Conf Ser 95:012016CrossRef Braunstein A, Pagnani A, Weigt M, Zecchina R (2008) Gene-network inference by message passing. J Phys Conf Ser 95:012016CrossRef
go back to reference Burt RS (1992) Structural holes. Harvard University Press, Cambridge Burt RS (1992) Structural holes. Harvard University Press, Cambridge
go back to reference Busch P, Fettke P (2011) Business process management under the microscope: the potential of social network analysis. In: Proceedings of the 44th Hawaii international conference on system sciences Busch P, Fettke P (2011) Business process management under the microscope: the potential of social network analysis. In: Proceedings of the 44th Hawaii international conference on system sciences
go back to reference Chan K, Liebowitz J (2006) The synergy of social network analysis and knowledge mapping: a case study. Int J Manag Decis Mak 7(1):19–35 Chan K, Liebowitz J (2006) The synergy of social network analysis and knowledge mapping: a case study. Int J Manag Decis Mak 7(1):19–35
go back to reference Cocco S, Monasson R (2011) Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys Rev Lett 106:090601CrossRef Cocco S, Monasson R (2011) Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys Rev Lett 106:090601CrossRef
go back to reference Cross R, Parker A (2001) Knowing what we know: supporting knowledge creation and sharing in social networks. Organ Dyn Cross R, Parker A (2001) Knowing what we know: supporting knowledge creation and sharing in social networks. Organ Dyn
go back to reference Cross R, Parker A (2002) Making invisible work visible: using social network analysis to support strategic collaboration. Calif Manag Rev 44(2):25–46CrossRef Cross R, Parker A (2002) Making invisible work visible: using social network analysis to support strategic collaboration. Calif Manag Rev 44(2):25–46CrossRef
go back to reference Cross R, Prusak L (2002) The people who make organizations go-or stop. Harv Bus Rev 80(6):104–112 Cross R, Prusak L (2002) The people who make organizations go-or stop. Harv Bus Rev 80(6):104–112
go back to reference dos Santos TA, de Araujo RM, Magdaleno AM (2010) Identifying collaboration patterns in software development social networks. INFOCOMP J Comput Sci 51–60 dos Santos TA, de Araujo RM, Magdaleno AM (2010) Identifying collaboration patterns in software development social networks. INFOCOMP J Comput Sci 51–60
go back to reference Drucker PF (1999) Management: tasks, responsibilities. Addison-Wesley, Harlow Drucker PF (1999) Management: tasks, responsibilities. Addison-Wesley, Harlow
go back to reference Ekeberg M, Lvkvist C, Lan Y, Weigt M, Aurell E (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys Rev E 87:012707CrossRef Ekeberg M, Lvkvist C, Lan Y, Weigt M, Aurell E (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys Rev E 87:012707CrossRef
go back to reference Fettke P (2009) How Conceptual Modeling is Used. Commun Assoc Inf Syst 25(1):43 Fettke P (2009) How Conceptual Modeling is Used. Commun Assoc Inf Syst 25(1):43
go back to reference Hammer M, Champy J (1993) Re-engineering the corporation, a manifesto for business revolution. Harper Business, New York Hammer M, Champy J (1993) Re-engineering the corporation, a manifesto for business revolution. Harper Business, New York
go back to reference Hanneman RA, Riddle M (2005) Introduction to social network methods. University of California, Riverside Hanneman RA, Riddle M (2005) Introduction to social network methods. University of California, Riverside
go back to reference Heskes T (2004) On the uniqueness of loopy belief propagation fixed points. Neural Comput 16:2379–2413CrossRefMATH Heskes T (2004) On the uniqueness of loopy belief propagation fixed points. Neural Comput 16:2379–2413CrossRefMATH
go back to reference Jedidi K, Jagpal HS, DeSarbo WS (1997) Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Mark Sci 16:39–59CrossRefMATH Jedidi K, Jagpal HS, DeSarbo WS (1997) Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Mark Sci 16:39–59CrossRefMATH
go back to reference Kiwata H (2012) Physical consideration of an image in image restoration using Bayes formula. Phys A 391:2215–2224MathSciNetCrossRef Kiwata H (2012) Physical consideration of an image in image restoration using Bayes formula. Phys A 391:2215–2224MathSciNetCrossRef
go back to reference Kolmogorov V (2006) Convergent tree-reweighted message passing for energy minimization. Pattern Anal Mach Intell (IEEE) 28:1568–1583CrossRef Kolmogorov V (2006) Convergent tree-reweighted message passing for energy minimization. Pattern Anal Mach Intell (IEEE) 28:1568–1583CrossRef
go back to reference Koschmider A, Song M, Reijers HA (2009) Social software for modeling business processes. In: BPM 2008 workshops. LNBIP, vol 17, pp 642–653 Koschmider A, Song M, Reijers HA (2009) Social software for modeling business processes. In: BPM 2008 workshops. LNBIP, vol 17, pp 642–653
go back to reference Liu S, Ying L, Shakkottai S (2010) Influence maximization in social networks: an Ising-model-based approach, communication, control, and computing (Allerton). In: 48th annual Allerton conference on (IEEE), pp 570–576 Liu S, Ying L, Shakkottai S (2010) Influence maximization in social networks: an Ising-model-based approach, communication, control, and computing (Allerton). In: 48th annual Allerton conference on (IEEE), pp 570–576
go back to reference Mooij JM (2011) Uniqueness of belief propagation on signed graphs. In: Advances in neural information processing systems, pp 1521–1529 Mooij JM (2011) Uniqueness of belief propagation on signed graphs. In: Advances in neural information processing systems, pp 1521–1529
go back to reference Mooij JM (2010) libDAI: a free and open source C++ library for discrete approximate inference in graphical models. J Mach Learn Res 11:2169–2173MATH Mooij JM (2010) libDAI: a free and open source C++ library for discrete approximate inference in graphical models. J Mach Learn Res 11:2169–2173MATH
go back to reference Newman ME, Leicht EA (2007) Mixture models and exploratory analysis in networks. Proc Natl Acad Sci USA 104:9564–9569CrossRefMATH Newman ME, Leicht EA (2007) Mixture models and exploratory analysis in networks. Proc Natl Acad Sci USA 104:9564–9569CrossRefMATH
go back to reference Pajevic S, Plenz D (2009) Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches. PloS Comput Biol 5:e1000271MathSciNetCrossRef Pajevic S, Plenz D (2009) Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches. PloS Comput Biol 5:e1000271MathSciNetCrossRef
go back to reference Papazoglou MP (2003) Web services and business transactions. World Wide Web Internet Web Inf Syst 6:49–91CrossRef Papazoglou MP (2003) Web services and business transactions. World Wide Web Internet Web Inf Syst 6:49–91CrossRef
go back to reference Phan D, Gordon MB, Nadal JP (2004) 20 social interactions in economic theory: an insight from statistical mechanics. In: Cognitive economics: an interdisciplinary approach, Springer, Berlin, pp 355–358 Phan D, Gordon MB, Nadal JP (2004) 20 social interactions in economic theory: an insight from statistical mechanics. In: Cognitive economics: an interdisciplinary approach, Springer, Berlin, pp 355–358
go back to reference Ricci-Tersenghi F (2012) The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods. J Stat Mech Theory Exp 8:P08015 Ricci-Tersenghi F (2012) The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods. J Stat Mech Theory Exp 8:P08015
go back to reference Scheer A-W (2001) ARIS-modellierungsmethoden, metamodelle,anwendungen (ARIS-modeling methods, meta-models, applications). Springer, BerlinCrossRef Scheer A-W (2001) ARIS-modellierungsmethoden, metamodelle,anwendungen (ARIS-modeling methods, meta-models, applications). Springer, BerlinCrossRef
go back to reference Serrats O (2009) Social network analysis, Knowledge Solutions Asian Development Bank Serrats O (2009) Social network analysis, Knowledge Solutions Asian Development Bank
go back to reference Song M, Choi I, Kim K, van der Aalst WMP (2008) Deriving social relations among organizational units from process models. Technische Universiteit Eindhoven, Eindhoven Song M, Choi I, Kim K, van der Aalst WMP (2008) Deriving social relations among organizational units from process models. Technische Universiteit Eindhoven, Eindhoven
go back to reference Tanaka K, Inoue J, Titterington DM (2003) Probabilistic image processing by means of Bethe approximation for Q-Ising model. J Phys A Math Gen 36(43):11023–11036MathSciNetCrossRefMATH Tanaka K, Inoue J, Titterington DM (2003) Probabilistic image processing by means of Bethe approximation for Q-Ising model. J Phys A Math Gen 36(43):11023–11036MathSciNetCrossRefMATH
go back to reference van der Aalst W (2005) Business alignment: using process mining as a tool for Delta analysis and conformance testing. Requir Eng 10:198–211CrossRef van der Aalst W (2005) Business alignment: using process mining as a tool for Delta analysis and conformance testing. Requir Eng 10:198–211CrossRef
go back to reference van der Aalst W, Reijers H (2005) Discovering social networks from event logs. Comput Support Coop Work 14:549–593CrossRef van der Aalst W, Reijers H (2005) Discovering social networks from event logs. Comput Support Coop Work 14:549–593CrossRef
go back to reference van der Aalst W, Reijers H (2007) Business process mining: an industrial application. Inf Syst 32:713–732CrossRef van der Aalst W, Reijers H (2007) Business process mining: an industrial application. Inf Syst 32:713–732CrossRef
go back to reference Wakita K, Tsurumi T (2007) Finding community structure in mega-scale social networks. In: Proceedings of the 16th international conference on World Wide Web, ACM, pp 1275–1276 Wakita K, Tsurumi T (2007) Finding community structure in mega-scale social networks. In: Proceedings of the 16th international conference on World Wide Web, ACM, pp 1275–1276
go back to reference Weller A, Tang K, Sontag D, Jebara T (2014) Understanding the Bethe approximation: when and how can it go wrong. In: Uncertainty in Artificial Intelligence (UAI) Weller A, Tang K, Sontag D, Jebara T (2014) Understanding the Bethe approximation: when and how can it go wrong. In: Uncertainty in Artificial Intelligence (UAI)
go back to reference Yamanishi Y, Vert J-P, Kanehisa M (2004) Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20:363–370CrossRef Yamanishi Y, Vert J-P, Kanehisa M (2004) Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20:363–370CrossRef
go back to reference Yasuda M, Kataoka S, Tanaka K (2012) Inverse problem in pairwise Markov random fields using loopy belief propagation. J Phys Soc Jpn 81(4):044801–044808CrossRef Yasuda M, Kataoka S, Tanaka K (2012) Inverse problem in pairwise Markov random fields using loopy belief propagation. J Phys Soc Jpn 81(4):044801–044808CrossRef
go back to reference Yeung MKS, Tegne J, Collins JJ (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 99:6163–6168CrossRef Yeung MKS, Tegne J, Collins JJ (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 99:6163–6168CrossRef
go back to reference Zeng H-L, Aurell E, Alava M, Mahmoudi H (2011) Network inference using asynchronously updated kinetic Ising model. Phys Rev E 83:041135CrossRef Zeng H-L, Aurell E, Alava M, Mahmoudi H (2011) Network inference using asynchronously updated kinetic Ising model. Phys Rev E 83:041135CrossRef
Metadata
Title
Statistical mechanics approach for collaborative business social network reconstruction
Authors
Angelo Corallo
Cristian Bisconti
Laura Fortunato
Antonio Andrea Gentile
Piergiuseppe Pellè
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0342-0

Premium Partner