Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

05-11-2020 | Regular Paper | Issue 2/2021

Knowledge and Information Systems 2/2021

Statistical model for reproducibility in ranking-based feature selection

Journal:
Knowledge and Information Systems > Issue 2/2021
Authors:
Ari Urkullu, Aritz Pérez, Borja Calvo
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10115-020-01519-3) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The stability of feature subset selection algorithms has become crucial in real-world problems due to the need for consistent experimental results across different replicates. Specifically, in this paper, we analyze the reproducibility of ranking-based feature subset selection algorithms. When applied to data, this family of algorithms builds an ordering of variables in terms of a measure of relevance. In order to quantify the reproducibility of ranking-based feature subset selection algorithms, we propose a model that takes into account all the different sized subsets of top-ranked features. The model is fitted to data through the minimization of an error function related to the expected values of Kuncheva’s consistency index for those subsets. Once it is fitted, the model provides practical information about the feature subset selection algorithm analyzed, such as a measure of its expected reproducibility or its estimated area under the receiver operating characteristic curve regarding the identification of relevant features. We test our model empirically using both synthetic and a wide range of real data. The results show that our proposal can be used to analyze feature subset selection algorithms based on rankings in terms of their reproducibility and their performance.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 2/2021

Knowledge and Information Systems 2/2021 Go to the issue

Premium Partner

    Image Credits