Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2022

20-05-2022

Statistical Structural Integrity Control of Composite Structures Based on an Automatic Operational Modal Analysis — a Review

Authors: R. Janeliukstis, D. Mironovs, A. Safonovs

Published in: Mechanics of Composite Materials | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The operational modal analysis (OMA), as a passive technique, has found a practical application in the structural health monitoring (SHM) of structures in service subjected to dynamic loadings. The state of structural integrity is judged by exploring the changes in values of the modal parameters estimated by the OMA. However, the entire framework of on-line damage identification and continuous monitoring is rather complex, involving several key building blocks. This work reviews the main steps in achieving the functionality of automatic damage identification in composite structures with a particular focus on wind turbine blades. The sensor instrumentation, extraction of damage-sensitive features from measured response signals, removal of environmental influence, automatic classification of physical and spurious modes of the system, and application of a statistical control to obtain the information on the possible structural damage are discussed. The merits and limitations of the OMA-based SHM approach for composite wind turbine blades are indicated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference M. Jeffrey. Managing turbine operating costs through comprehensive and targeted rotor blade inspections. Operation and Maintenance Summit. M. Jeffrey. Managing turbine operating costs through comprehensive and targeted rotor blade inspections. Operation and Maintenance Summit.
3.
go back to reference C. Martinez, F. Asare Yeboah, S. Herford, M. Brzezinski, and V. Puttagunta, “Predicting wind turbine blade erosion using machine learning,” SMU Data Science Review, 2, No. 2, (2019). C. Martinez, F. Asare Yeboah, S. Herford, M. Brzezinski, and V. Puttagunta, “Predicting wind turbine blade erosion using machine learning,” SMU Data Science Review, 2, No. 2, (2019).
4.
go back to reference S. Rucevskis, R. Janeliukstis, P. Akishin, and A. Chate, “Mode shape-based damage detection in plate structure without baseline data,” Struct. Control Health Monit., 23, 1180-1193 (2016).CrossRef S. Rucevskis, R. Janeliukstis, P. Akishin, and A. Chate, “Mode shape-based damage detection in plate structure without baseline data,” Struct. Control Health Monit., 23, 1180-1193 (2016).CrossRef
5.
go back to reference O. S. David-West, D. M. Amafabia, G. Haritos, and D. Montalavao, “A review of structural health monitoring techniques as applied to composite structures, in: Structural Durability and Health Monitoring SDHM (2017). O. S. David-West, D. M. Amafabia, G. Haritos, and D. Montalavao, “A review of structural health monitoring techniques as applied to composite structures, in: Structural Durability and Health Monitoring SDHM (2017).
6.
go back to reference J. B. Hansen, R. Brincker, M. López-Aenlle, C. F. Overgaard, and K. Kloborg, “A new scenario-based approach to damage detection using operational modal parameter estimates,” Mech. Syst. Signal Pr., 94, 359-373 (2017).CrossRef J. B. Hansen, R. Brincker, M. López-Aenlle, C. F. Overgaard, and K. Kloborg, “A new scenario-based approach to damage detection using operational modal parameter estimates,” Mech. Syst. Signal Pr., 94, 359-373 (2017).CrossRef
7.
go back to reference G. Tondreau and A. Deraemaeker, “Automated data-based damage localization under ambient vibration using local modal filters and dynamic strain measurements: Experimental applications”, J. Sound Vib. 333, 7364-7385 (2014).CrossRef G. Tondreau and A. Deraemaeker, “Automated data-based damage localization under ambient vibration using local modal filters and dynamic strain measurements: Experimental applications”, J. Sound Vib. 333, 7364-7385 (2014).CrossRef
8.
go back to reference C. Rainieri, G. Fabbrocino, and E. Cosenza, “Automated operational modal analysis as structural health monitoring tool: theoretical and applicative aspects,” Key Eng. Mat., 347, 479-484 (2007).CrossRef C. Rainieri, G. Fabbrocino, and E. Cosenza, “Automated operational modal analysis as structural health monitoring tool: theoretical and applicative aspects,” Key Eng. Mat., 347, 479-484 (2007).CrossRef
9.
go back to reference A. Bakdi, A. Kouadri, and B. Abderazak, “Fault detection and diagnosis in a cement rotary kiln using PCA with EWMAbased adaptive threshold monitoring scheme,” Control Eng. Pract., 66, 64-75 (2017).CrossRef A. Bakdi, A. Kouadri, and B. Abderazak, “Fault detection and diagnosis in a cement rotary kiln using PCA with EWMAbased adaptive threshold monitoring scheme,” Control Eng. Pract., 66, 64-75 (2017).CrossRef
10.
go back to reference A. Bakdi and A. Kouadri, “A new adaptive PCA based thresholding scheme for fault detection in complex systems,” Chemom. Intell. Lab Syst., 162, 83-93 (2017).CrossRef A. Bakdi and A. Kouadri, “A new adaptive PCA based thresholding scheme for fault detection in complex systems,” Chemom. Intell. Lab Syst., 162, 83-93 (2017).CrossRef
11.
go back to reference Z. Yingwei, A. Jiayu, and Z. Hailong, “Monitoring of time-varying processes using kernel independent component analysis,” Chem. Eng. Sci. 88, 23-32 (2013).CrossRef Z. Yingwei, A. Jiayu, and Z. Hailong, “Monitoring of time-varying processes using kernel independent component analysis,” Chem. Eng. Sci. 88, 23-32 (2013).CrossRef
12.
go back to reference K. Qian, R. Qingguo, L. Yan, X. Lingyan et al., “On-line monitoring the extract process of Fu-fang Shuanghua oral solution using near infrared spectroscopy and different PLS algorithms,” Spectrochim Acta Part A: Mol Biomol Spectrosc., 152, 431-437 (2016).CrossRef K. Qian, R. Qingguo, L. Yan, X. Lingyan et al., “On-line monitoring the extract process of Fu-fang Shuanghua oral solution using near infrared spectroscopy and different PLS algorithms,” Spectrochim Acta Part A: Mol Biomol Spectrosc., 152, 431-437 (2016).CrossRef
13.
go back to reference T. Jiawei and Y. Xuefeng, “Neural network modeling relationship between inputs and state mapping plane obtained by FDA-t-SNE for visual industrial process monitoring,” Appl. Soft Comput., 60, 577-90 (2017).CrossRef T. Jiawei and Y. Xuefeng, “Neural network modeling relationship between inputs and state mapping plane obtained by FDA-t-SNE for visual industrial process monitoring,” Appl. Soft Comput., 60, 577-90 (2017).CrossRef
14.
go back to reference S. Silvio and C. Paolo, “Data-driven and adaptive control applications to a wind turbine benchmark model,” Control Eng. Pract., 21, No. 12, 1678-1693 (2013).CrossRef S. Silvio and C. Paolo, “Data-driven and adaptive control applications to a wind turbine benchmark model,” Control Eng. Pract., 21, No. 12, 1678-1693 (2013).CrossRef
15.
go back to reference I. Valente de Bessa, R. Martinez Palhares, M. Flavio Silveira Vasconcelos D’Angelo, and F. Joao Edgar Chaves, “Datadriven fault detection and isolation scheme for a wind turbine benchmark,” Renew. Energy 87, 634-645 (2016).CrossRef I. Valente de Bessa, R. Martinez Palhares, M. Flavio Silveira Vasconcelos D’Angelo, and F. Joao Edgar Chaves, “Datadriven fault detection and isolation scheme for a wind turbine benchmark,” Renew. Energy 87, 634-645 (2016).CrossRef
16.
go back to reference C. Devriendt, F. Magalhães, W. Weijtjens, G. De Sitter, Á. Cunha, and P. Guillaume, “Structural health monitoring of offshore wind turbines using automated operational modal analysis,” Struct. Health Monit., 13, 644 (2014).CrossRef C. Devriendt, F. Magalhães, W. Weijtjens, G. De Sitter, Á. Cunha, and P. Guillaume, “Structural health monitoring of offshore wind turbines using automated operational modal analysis,” Struct. Health Monit., 13, 644 (2014).CrossRef
17.
go back to reference D. Liu, M. Luo, Z. Zhang, Y. Hu et al., “Operational modal analysis based dynamic parameters identification in milling of thin-walled workpiece,” Mech. Syst. Signal Pr., 167, 108469 (2022).CrossRef D. Liu, M. Luo, Z. Zhang, Y. Hu et al., “Operational modal analysis based dynamic parameters identification in milling of thin-walled workpiece,” Mech. Syst. Signal Pr., 167, 108469 (2022).CrossRef
18.
go back to reference F. B. Zahid, Z. C. Ong, and S. Y. Khoo, “A review of operational modal analysis techniques for in-service modal identification,” J. Braz. Soc. Mech. Sci., 42, 398 (2020).CrossRef F. B. Zahid, Z. C. Ong, and S. Y. Khoo, “A review of operational modal analysis techniques for in-service modal identification,” J. Braz. Soc. Mech. Sci., 42, 398 (2020).CrossRef
19.
go back to reference R. Minette, S. Silva Neto, L. Vaz, and U. Monteiro, “Experimental modal analysis of electrical submersible pumps,” Ocean Eng., 124, 168-179 (2016).CrossRef R. Minette, S. Silva Neto, L. Vaz, and U. Monteiro, “Experimental modal analysis of electrical submersible pumps,” Ocean Eng., 124, 168-179 (2016).CrossRef
20.
go back to reference S. Pietrzko, R. Cantieni, and Y. Deger, “Modal testing of a steel/concrete composite bridge with a servo-hydraulic shaker,” In: Proceedings-SPIE the international society for optical engineering, 91-98 (1996). S. Pietrzko, R. Cantieni, and Y. Deger, “Modal testing of a steel/concrete composite bridge with a servo-hydraulic shaker,” In: Proceedings-SPIE the international society for optical engineering, 91-98 (1996).
21.
go back to reference M. Haroon, “Free and forced vibration models,” in: C. Boller, F.-K. Chang and Y. Fujino (eds.), Encyclopedia of Structural Health Monitoring, Wiley (2009). M. Haroon, “Free and forced vibration models,” in: C. Boller, F.-K. Chang and Y. Fujino (eds.), Encyclopedia of Structural Health Monitoring, Wiley (2009).
22.
go back to reference J. Kang, L. Liu, S.-D. Zhou, and Y.-P. Shao, “A novel time-domain representation of transmissibility and its applications on operational modal analysis in the presence of non-white stochastic excitations,” J. Sound Vib., 457, 157-180 (2019).CrossRef J. Kang, L. Liu, S.-D. Zhou, and Y.-P. Shao, “A novel time-domain representation of transmissibility and its applications on operational modal analysis in the presence of non-white stochastic excitations,” J. Sound Vib., 457, 157-180 (2019).CrossRef
23.
go back to reference R. Brincker, P. Andersen, and N. Møller, “An indicator for separation of structural and harmonic modes in output-only modal testing,” in: European COST F3 Conference on System Identification and Structural Health Monitoring, Universidad Politecnica de Madrid, Spain, 265-272 (2000). R. Brincker, P. Andersen, and N. Møller, “An indicator for separation of structural and harmonic modes in output-only modal testing,” in: European COST F3 Conference on System Identification and Structural Health Monitoring, Universidad Politecnica de Madrid, Spain, 265-272 (2000).
24.
go back to reference S. V. Modak, “Separation of structural modes and harmonic frequencies in Operational Modal Analysis using random decrement,” Mech. Syst. Signal Process., 41, No. 1-2, 366-379 (2013).CrossRef S. V. Modak, “Separation of structural modes and harmonic frequencies in Operational Modal Analysis using random decrement,” Mech. Syst. Signal Process., 41, No. 1-2, 366-379 (2013).CrossRef
25.
go back to reference A. Agneni, G. Coppotelli, and C. Grappasonni, “Operational Modal Analysis of a Rotating Helicopter Blade,” in: Proceedings of ISMA 2010 and USD 2010 (2010). A. Agneni, G. Coppotelli, and C. Grappasonni, “Operational Modal Analysis of a Rotating Helicopter Blade,” in: Proceedings of ISMA 2010 and USD 2010 (2010).
26.
go back to reference N. J. Jacobsen, P. Andersen, and R. Brincker, “Eliminating the Influence of Harmonic Components in Operational Modal Analysis,” in: Proceedings of XXV International Modal Analysis Conference IMAC (2007). N. J. Jacobsen, P. Andersen, and R. Brincker, “Eliminating the Influence of Harmonic Components in Operational Modal Analysis,” in: Proceedings of XXV International Modal Analysis Conference IMAC (2007).
27.
go back to reference H. Kawai, “The piezoelectricity of poly(vinylidene fluoride),” Jpn. J. Appl. Phys., 8, No. 7, 975-976 (1969).CrossRef H. Kawai, “The piezoelectricity of poly(vinylidene fluoride),” Jpn. J. Appl. Phys., 8, No. 7, 975-976 (1969).CrossRef
28.
go back to reference T. Bregar, B. Starc, G. Čepon, and M. Boltežar, “On the Use of PVDF Sensors for Experimental Modal Analysis,” in: Dilworth B., Mains M. (eds) Topics in Modal Analysis Testing, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. T. Bregar, B. Starc, G. Čepon, and M. Boltežar, “On the Use of PVDF Sensors for Experimental Modal Analysis,” in: Dilworth B., Mains M. (eds) Topics in Modal Analysis Testing, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham.
29.
go back to reference M. Luo, H. Luo, D. Axinte, D. S. Liu et al., “A wireless instrumented milling cutter system with embedded PVDF sensors,” Mech. Syst. Sig. Process., 110, 556-568 (2018).CrossRef M. Luo, H. Luo, D. Axinte, D. S. Liu et al., “A wireless instrumented milling cutter system with embedded PVDF sensors,” Mech. Syst. Sig. Process., 110, 556-568 (2018).CrossRef
30.
go back to reference D. Mironovs and A. Mironov, “Vibration based signal processing algorithm for modal characteristics change assessment,” AIP Conference Proceedings 2029, 020043 (2018).CrossRef D. Mironovs and A. Mironov, “Vibration based signal processing algorithm for modal characteristics change assessment,” AIP Conference Proceedings 2029, 020043 (2018).CrossRef
31.
go back to reference R. Wu, P. A. Selvadurai, C. Chen et al. “Revisiting Piezoelectric Sensor Calibration Methods Using Elastodynamic Body Waves,” J. Nondestruct. Eval. 40, 68 (2021).CrossRef R. Wu, P. A. Selvadurai, C. Chen et al. “Revisiting Piezoelectric Sensor Calibration Methods Using Elastodynamic Body Waves,” J. Nondestruct. Eval. 40, 68 (2021).CrossRef
32.
go back to reference D. Li, S.-C. M. Ho, G. Song, L. Ren et al., “A review of damage detection methods for wind turbine blades,” Smart Mater. Struct., 24, 033001 (2015).CrossRef D. Li, S.-C. M. Ho, G. Song, L. Ren et al., “A review of damage detection methods for wind turbine blades,” Smart Mater. Struct., 24, 033001 (2015).CrossRef
33.
go back to reference R. Janeliukstis and D. Mironovs, “Smart composite structures with embedded sensors for load and damage monitoring — A Review,” Mech. Compos. Mater., 57, 131-152 (2021).CrossRef R. Janeliukstis and D. Mironovs, “Smart composite structures with embedded sensors for load and damage monitoring — A Review,” Mech. Compos. Mater., 57, 131-152 (2021).CrossRef
34.
go back to reference S. Nain, J. S. Rathore, and N. N. Sharma, “Comparison of Piezo-material based Energy Transduction Systems for Artificial Nanoswimmer”, IOP Conf. Ser.-Mat. Sci., 346, 012079 (2018). S. Nain, J. S. Rathore, and N. N. Sharma, “Comparison of Piezo-material based Energy Transduction Systems for Artificial Nanoswimmer”, IOP Conf. Ser.-Mat. Sci., 346, 012079 (2018).
35.
go back to reference A. Mironov and D. Mironovs, “Experimental application of OMA solutions on the model of industrial structure,” IOP Conf. Ser.-Mat. Sci., 251, 012092 (2017). A. Mironov and D. Mironovs, “Experimental application of OMA solutions on the model of industrial structure,” IOP Conf. Ser.-Mat. Sci., 251, 012092 (2017).
36.
go back to reference D. Mironovs, A. Mironov, and A. Chate, “Application case: Prototype of radar tower structural health monitoring system,” in: Proceedings of conference ERDeV - Engineering for Rural Development, Jelgava, Latvia (2018). D. Mironovs, A. Mironov, and A. Chate, “Application case: Prototype of radar tower structural health monitoring system,” in: Proceedings of conference ERDeV - Engineering for Rural Development, Jelgava, Latvia (2018).
37.
go back to reference Y-J. Li, G.-C. Wang, H.-Y. Cui, S-K. Cao et al., “Dynamic characteristics and optimization research on PVDF piezo electric film force sensor for steel ball cold heading machine,” ISA T., 94, 265-275 (2019). Y-J. Li, G.-C. Wang, H.-Y. Cui, S-K. Cao et al., “Dynamic characteristics and optimization research on PVDF piezo electric film force sensor for steel ball cold heading machine,” ISA T., 94, 265-275 (2019).
39.
go back to reference A. Mironov, A. Priklonskiy, D. Mironovs and P. Doronkin, “Application of deformation sensors for structural health monitoring of transport vehicles,” in: Kabashkin I., Yatskiv I., Prentkovskis O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2019. Lecture Notes in Networks and Systems, vol 117. Springer, Cham (2019). A. Mironov, A. Priklonskiy, D. Mironovs and P. Doronkin, “Application of deformation sensors for structural health monitoring of transport vehicles,” in: Kabashkin I., Yatskiv I., Prentkovskis O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2019. Lecture Notes in Networks and Systems, vol 117. Springer, Cham (2019).
40.
go back to reference SDT Shielded Piezo Sensors, Technical Data, (2009). SDT Shielded Piezo Sensors, Technical Data, (2009).
41.
go back to reference É. L. Oliveira, N. M. M. Maia, A. G. Marto, R. G. A. da Silva et al., “Modal characterization of composite flat plate models using piezoelectric transducers,” Mech. Syst. Signal Pr., 79, 16-29 (2016).CrossRef É. L. Oliveira, N. M. M. Maia, A. G. Marto, R. G. A. da Silva et al., “Modal characterization of composite flat plate models using piezoelectric transducers,” Mech. Syst. Signal Pr., 79, 16-29 (2016).CrossRef
42.
go back to reference A. K. Pandey, M. Biswas, and M. M. Samman, “Damage detection from changes in curvature mode shapes,” J. Sound Vib., 145, 321-332 (1991).CrossRef A. K. Pandey, M. Biswas, and M. M. Samman, “Damage detection from changes in curvature mode shapes,” J. Sound Vib., 145, 321-332 (1991).CrossRef
43.
go back to reference A. Deraemaeker, “On the use of dynamic strains and curvatures for vibration based damage localization,” in: Proceedings of the 5th European Workshop on Structural Health Monitoring, Sorrento, Italy (2010). A. Deraemaeker, “On the use of dynamic strains and curvatures for vibration based damage localization,” in: Proceedings of the 5th European Workshop on Structural Health Monitoring, Sorrento, Italy (2010).
44.
go back to reference Y. Gu, L. Long, and P. Tan, “Surface strain distribution method for delamination detection using piezoelectric actuators and sensors,” in: Proceedings of 9th International Conference on Damage Assessment of Structures, Oxford, UK (2011). Y. Gu, L. Long, and P. Tan, “Surface strain distribution method for delamination detection using piezoelectric actuators and sensors,” in: Proceedings of 9th International Conference on Damage Assessment of Structures, Oxford, UK (2011).
45.
go back to reference Y. Xin, H. Sun, H. Tian, C. Guo et al., “The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: A brief review,” Ferroelectrics 502, No. 1, 28-42 (2016).CrossRef Y. Xin, H. Sun, H. Tian, C. Guo et al., “The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: A brief review,” Ferroelectrics 502, No. 1, 28-42 (2016).CrossRef
49.
go back to reference A. Mironov, P. Doronkin, and A. Priklonsky, “Experimental technology of operational pipeline condition monitoring,” MATEC web of conferences 24, 02005 (2015).CrossRef A. Mironov, P. Doronkin, and A. Priklonsky, “Experimental technology of operational pipeline condition monitoring,” MATEC web of conferences 24, 02005 (2015).CrossRef
50.
go back to reference A. Mironov, P. Doronkin, A. Priklonsky, and I. Kabashkin, “Structural health monitoring of rotating blades on helicopters,” Aviation, 20, 110-22 (2016).CrossRef A. Mironov, P. Doronkin, A. Priklonsky, and I. Kabashkin, “Structural health monitoring of rotating blades on helicopters,” Aviation, 20, 110-22 (2016).CrossRef
51.
go back to reference E. Reynders and G. D. Roeck, “Damage identification on the Tilff bridge by vibration monitoring using finite element model updating,” Proceedings of Experimental Vibration Analysis for Civil Engineering Structures, Bordeaux, France (2005). E. Reynders and G. D. Roeck, “Damage identification on the Tilff bridge by vibration monitoring using finite element model updating,” Proceedings of Experimental Vibration Analysis for Civil Engineering Structures, Bordeaux, France (2005).
52.
go back to reference E. Reynders, A. Teughels, and G. D. Roeck, “Finite element model updating and structural damage identification using OMAX data,” Mech. Syst. Signal Pr., 24, 1306-1323 (2010).CrossRef E. Reynders, A. Teughels, and G. D. Roeck, “Finite element model updating and structural damage identification using OMAX data,” Mech. Syst. Signal Pr., 24, 1306-1323 (2010).CrossRef
53.
go back to reference C. P. Fritzen, D. Jennewein, and T. Kiefer, “Damage detection based on model updating methods,” Mech. Syst. Signal Pr., 12, 163-186 (1998).CrossRef C. P. Fritzen, D. Jennewein, and T. Kiefer, “Damage detection based on model updating methods,” Mech. Syst. Signal Pr., 12, 163-186 (1998).CrossRef
54.
go back to reference G. Helbing and M. Ritter, “Deep learning for fault detection in wind turbines,” Renew. Sust. Energ. Rev., 98, 189-198 (2018).CrossRef G. Helbing and M. Ritter, “Deep learning for fault detection in wind turbines,” Renew. Sust. Energ. Rev., 98, 189-198 (2018).CrossRef
55.
go back to reference A. Deraemaeker, E. Reynders, G. De Roeck, and J. Kullaa, “Vibration-based structural health monitoring using outputonly measurements under changing environment,” Mech. Syst. Signal Pr., 22, 34-56 (2008).CrossRef A. Deraemaeker, E. Reynders, G. De Roeck, and J. Kullaa, “Vibration-based structural health monitoring using outputonly measurements under changing environment,” Mech. Syst. Signal Pr., 22, 34-56 (2008).CrossRef
56.
go back to reference P. S. Rao and C. Ratnam, “Health monitoring of welded structures using statistical process control,” Mech. Syst. Signal Pr., 27, 683-695 (2012).CrossRef P. S. Rao and C. Ratnam, “Health monitoring of welded structures using statistical process control,” Mech. Syst. Signal Pr., 27, 683-695 (2012).CrossRef
57.
go back to reference L. Colone, M. K. Hovgaard, L. Glavind, and R. Brincker, “Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition,” Mech. Syst. Signal Pr., 107, 266-277 (2018).CrossRef L. Colone, M. K. Hovgaard, L. Glavind, and R. Brincker, “Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition,” Mech. Syst. Signal Pr., 107, 266-277 (2018).CrossRef
58.
go back to reference M. Martinez-Luengo, A. Kolios, and L. Wang, “Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm,” Renew. Sust. Energ. Rev., 64, 91-105 (2016).CrossRef M. Martinez-Luengo, A. Kolios, and L. Wang, “Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm,” Renew. Sust. Energ. Rev., 64, 91-105 (2016).CrossRef
59.
go back to reference D. García and D. Tcherniak, “An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator,” Mech. Syst. Signal Pr., 127, 102-119 (2019).CrossRef D. García and D. Tcherniak, “An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator,” Mech. Syst. Signal Pr., 127, 102-119 (2019).CrossRef
60.
go back to reference E. Neu, F. Janser, A. A. Khatibi, and A. C. Orifici, “Fully Automated Operational Modal Analysis using multi-stage clustering,” Mech. Syst. Signal Pr., 84, 308-323 (2017).CrossRef E. Neu, F. Janser, A. A. Khatibi, and A. C. Orifici, “Fully Automated Operational Modal Analysis using multi-stage clustering,” Mech. Syst. Signal Pr., 84, 308-323 (2017).CrossRef
61.
go back to reference D. J. Ewins, “Model validation: Correlation for updating,” Sadhana, 25, 221-234 (2000).CrossRef D. J. Ewins, “Model validation: Correlation for updating,” Sadhana, 25, 221-234 (2000).CrossRef
62.
go back to reference R. Janeliukstis, R. Riva, E. Di Lorenzo, M. Luczak et al., “Comparison of wind turbine blade models through correlation with experimental modal data,” in: Proceedings of ISMA and USD, International Conference on Noise and Vibration Engineering and International Conference on uncertainty in Structural Dynamics, Belgium, Leuven (2020). R. Janeliukstis, R. Riva, E. Di Lorenzo, M. Luczak et al., “Comparison of wind turbine blade models through correlation with experimental modal data,” in: Proceedings of ISMA and USD, International Conference on Noise and Vibration Engineering and International Conference on uncertainty in Structural Dynamics, Belgium, Leuven (2020).
63.
go back to reference C. Devriendt, F. Presezniak, G. De Sitter, K. Vanbrabant et al., “Structural health monitoring in changing operational conditions using transmissibility measurements,” Shock Vib., 17, 651-675 (2010).CrossRef C. Devriendt, F. Presezniak, G. De Sitter, K. Vanbrabant et al., “Structural health monitoring in changing operational conditions using transmissibility measurements,” Shock Vib., 17, 651-675 (2010).CrossRef
64.
go back to reference Y. Zhou, R. Perera, and E. Sevillano, “Damage identification from power spectrum density transmissibility,” in: Proceeding of the 6th European Workshop on Structural Health Monitoring Th.3.D.3 (2012). Y. Zhou, R. Perera, and E. Sevillano, “Damage identification from power spectrum density transmissibility,” in: Proceeding of the 6th European Workshop on Structural Health Monitoring Th.3.D.3 (2012).
65.
go back to reference Y.-L. Zhou, N. M. M. Maia, R. P. C. Sampaio, and M. Abdel Wahab, “Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure,” Struct. Health Monit., 16, No. 6, 711-731 (2017).CrossRef Y.-L. Zhou, N. M. M. Maia, R. P. C. Sampaio, and M. Abdel Wahab, “Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure,” Struct. Health Monit., 16, No. 6, 711-731 (2017).CrossRef
66.
go back to reference H. Sohn, “Effect of environmental and operational variability on structural health monitoring,” Philos. T. R. Soc. A., 365, 539-560 (2006).CrossRef H. Sohn, “Effect of environmental and operational variability on structural health monitoring,” Philos. T. R. Soc. A., 365, 539-560 (2006).CrossRef
67.
go back to reference B. Peeters, J. Maeck, and G. De Roeck, “Vibration-based damage detection in civil engineering: excitation sources and temperature effects,” Smart Mater. Struct., 10, 518-527 (2001).CrossRef B. Peeters, J. Maeck, and G. De Roeck, “Vibration-based damage detection in civil engineering: excitation sources and temperature effects,” Smart Mater. Struct., 10, 518-527 (2001).CrossRef
68.
go back to reference W.-H. Hu, “Operational modal analysis and continuous dynamic monitoring of footbridges,” PhD thesis, University of Porto (2011). W.-H. Hu, “Operational modal analysis and continuous dynamic monitoring of footbridges,” PhD thesis, University of Porto (2011).
69.
go back to reference G. Manson, “Identifying damage sensitive, environment insensitive features for damage detection,” in: Proceedings of the Third International Conference on Identification in Engineering Systems (2002). G. Manson, “Identifying damage sensitive, environment insensitive features for damage detection,” in: Proceedings of the Third International Conference on Identification in Engineering Systems (2002).
70.
go back to reference A. Yan, G. Kerschen, P. D. Boe, and J. Golinval, “Structural damaged diagnosis under varying environmental conditions-part I: a linear analysis,” Mech. Syst. Signal Pr., 19, No. 4, 847-864 (2005).CrossRef A. Yan, G. Kerschen, P. D. Boe, and J. Golinval, “Structural damaged diagnosis under varying environmental conditions-part I: a linear analysis,” Mech. Syst. Signal Pr., 19, No. 4, 847-864 (2005).CrossRef
71.
go back to reference G. Manson, B. Lee, and W. Staszewski, “Eliminating environmental effects from Lamb wave-based structural health monitoring,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven (2004). G. Manson, B. Lee, and W. Staszewski, “Eliminating environmental effects from Lamb wave-based structural health monitoring,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven (2004).
72.
go back to reference S. Vanlanduit, E. Parloo, B. Cauberghe, P. Guillaume et al., “A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties,” J. Sound Vib., 284, 1033-1050 (2005).CrossRef S. Vanlanduit, E. Parloo, B. Cauberghe, P. Guillaume et al., “A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties,” J. Sound Vib., 284, 1033-1050 (2005).CrossRef
73.
go back to reference J. Kullaa, “Structural health monitoring of a crane in variable configurations,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven (2004). J. Kullaa, “Structural health monitoring of a crane in variable configurations,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven (2004).
74.
go back to reference A. Tarantola, Inverse Problem Theory, Elsevier, Amsterdam (1987). A. Tarantola, Inverse Problem Theory, Elsevier, Amsterdam (1987).
75.
go back to reference P. Verboven, E. Parloo, P. Guillaume, and M. Van Overmeire, “Autonomous Structural Health Monitoring Part I: Modal Parameter Estimation and Tracking,” Mech. Syst. Signal Pr., 16, No. 4, 637-657 (2002).CrossRef P. Verboven, E. Parloo, P. Guillaume, and M. Van Overmeire, “Autonomous Structural Health Monitoring Part I: Modal Parameter Estimation and Tracking,” Mech. Syst. Signal Pr., 16, No. 4, 637-657 (2002).CrossRef
76.
go back to reference M. He, P. Liang, J. Li, Y. Zhang et al., “Fully automated precise operational modal identification,” Eng. Struct., 234, 111988 (2021).CrossRef M. He, P. Liang, J. Li, Y. Zhang et al., “Fully automated precise operational modal identification,” Eng. Struct., 234, 111988 (2021).CrossRef
77.
go back to reference P. Guillaume, P. Verboven, S. Vanlanduit et al., “A polyreference implementation of the least-squares complex frequency domain-estimator,” in: Proceedings of the IMAC XXI, International Modal Analysis Conference, USA, Florida, Kissimmee, 3-6 February (2003). P. Guillaume, P. Verboven, S. Vanlanduit et al., “A polyreference implementation of the least-squares complex frequency domain-estimator,” in: Proceedings of the IMAC XXI, International Modal Analysis Conference, USA, Florida, Kissimmee, 3-6 February (2003).
78.
go back to reference I. Goethals, B. Vanluyten, and B. De Moor, “Reliable spurious mode rejection using self-learning algorithms,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven, 20-22 September (2004). I. Goethals, B. Vanluyten, and B. De Moor, “Reliable spurious mode rejection using self-learning algorithms,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven, 20-22 September (2004).
79.
go back to reference E. P. Carden and J. M. W. Brownjohn, “Fuzzy clustering of stability diagrams for vibration-based structural health monitoring,” Comput-Aided Civ. Inf., 23, No. 5, 360-372 (2008).CrossRef E. P. Carden and J. M. W. Brownjohn, “Fuzzy clustering of stability diagrams for vibration-based structural health monitoring,” Comput-Aided Civ. Inf., 23, No. 5, 360-372 (2008).CrossRef
80.
go back to reference F. Magalhães, A. Cunha, and E. Caetano, “On line automatic identification of the modal parameters of a long span arch bridge,” Mech. Syst. Signal Pr., 23, No. 2, 316-329 (2009).CrossRef F. Magalhães, A. Cunha, and E. Caetano, “On line automatic identification of the modal parameters of a long span arch bridge,” Mech. Syst. Signal Pr., 23, No. 2, 316-329 (2009).CrossRef
81.
go back to reference A. Downey, F. Ubertini, and S. Laflamme, “Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion,” J. Wind Eng. Ind. Aerod., 168, 288-296 (2017).CrossRef A. Downey, F. Ubertini, and S. Laflamme, “Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion,” J. Wind Eng. Ind. Aerod., 168, 288-296 (2017).CrossRef
82.
go back to reference E. Reynders, J. Houbrechts, and G. De Roeck, “Fully automated (operational) modal analysis,” Mech. Syst. Signal Pr., 29, 228-250 (2012).CrossRef E. Reynders, J. Houbrechts, and G. De Roeck, “Fully automated (operational) modal analysis,” Mech. Syst. Signal Pr., 29, 228-250 (2012).CrossRef
83.
go back to reference E. Reynders and G. De Roeck, “Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis,” Mech. Syst. Signal Process., 22, No. 3, 617-637 (2008).CrossRef E. Reynders and G. De Roeck, “Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis,” Mech. Syst. Signal Process., 22, No. 3, 617-637 (2008).CrossRef
84.
go back to reference M. El-Kafafy, C. Devriendt, G. De Sitter et al., “Damping estimation of offshore wind turbines using state-of-the art operational modal analysis techniques,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven, 17-19 September (2012). M. El-Kafafy, C. Devriendt, G. De Sitter et al., “Damping estimation of offshore wind turbines using state-of-the art operational modal analysis techniques,” in: Proceedings of ISMA, International Conference on Noise and Vibration Engineering, Belgium, Leuven, 17-19 September (2012).
85.
go back to reference C. Devriendt, P. Jan Jordaens, G. De Sitter et al., “Damping estimation of an offshore wind turbine on a monopole foundation, in: EWEA 2012, Copenhagen, 16-19 April (2012). C. Devriendt, P. Jan Jordaens, G. De Sitter et al., “Damping estimation of an offshore wind turbine on a monopole foundation, in: EWEA 2012, Copenhagen, 16-19 April (2012).
86.
go back to reference P. Bangalore and M. Patriksson, “Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines,” Renew. Energ., 115, 521e532 (2018).CrossRef P. Bangalore and M. Patriksson, “Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines,” Renew. Energ., 115, 521e532 (2018).CrossRef
87.
go back to reference D. Garcia, D. Tcherniak, and I. Trendafilova, “Damage assessment for wind turbine blades based on a multivariate statistical approach,” J. Phys. Conf. Ser., 628, 012086 (2015).CrossRef D. Garcia, D. Tcherniak, and I. Trendafilova, “Damage assessment for wind turbine blades based on a multivariate statistical approach,” J. Phys. Conf. Ser., 628, 012086 (2015).CrossRef
88.
go back to reference H. Sohn, C. R. Farrar, N. F. Hunter, and K. Worden, “Structural Health Monitoring Using Statistical Pattern Recognition Techniques,” J. Dyn. Syst.-T. ASME, 123, 706-711 (2001).CrossRef H. Sohn, C. R. Farrar, N. F. Hunter, and K. Worden, “Structural Health Monitoring Using Statistical Pattern Recognition Techniques,” J. Dyn. Syst.-T. ASME, 123, 706-711 (2001).CrossRef
89.
go back to reference D. C. Montgomery, Statistical Quality Control: A Modern Introduction, John Wiley and Sons, New York (2009). D. C. Montgomery, Statistical Quality Control: A Modern Introduction, John Wiley and Sons, New York (2009).
90.
go back to reference T. P. Ryan, Statistical Methods for Quality Improvement, John Wiley and Sons, New York (2000). T. P. Ryan, Statistical Methods for Quality Improvement, John Wiley and Sons, New York (2000).
91.
go back to reference M. Basseville, L. Mevel, and M. Goursat, “Statistical model based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios,” J. Sound Vib., 275, 769-794 (2004).CrossRef M. Basseville, L. Mevel, and M. Goursat, “Statistical model based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios,” J. Sound Vib., 275, 769-794 (2004).CrossRef
92.
go back to reference D. C. Montgomery, Introduction to Statistical Quality Control, fourth edition, John Wiley and Sons (ASIA) Pte Ltd., Singapore (2004). D. C. Montgomery, Introduction to Statistical Quality Control, fourth edition, John Wiley and Sons (ASIA) Pte Ltd., Singapore (2004).
93.
go back to reference K. Chandrasekhar, N. Stevanovic, E. J. Cross, N. Dervilis et al., “Damage detection in operational wind turbine blades using a new approach based on machine learning,” Renew. Energ., 168, 1249e1264 (2021).CrossRef K. Chandrasekhar, N. Stevanovic, E. J. Cross, N. Dervilis et al., “Damage detection in operational wind turbine blades using a new approach based on machine learning,” Renew. Energ., 168, 1249e1264 (2021).CrossRef
94.
go back to reference V. B. Vommi and M. S. N. Seetala, “A simple approach for robust economic design of control charts,” Comput. Oper. Res. 34, 2001-2009 (2007).CrossRef V. B. Vommi and M. S. N. Seetala, “A simple approach for robust economic design of control charts,” Comput. Oper. Res. 34, 2001-2009 (2007).CrossRef
95.
go back to reference R. Janeliukstis and M. McGugan, “Control of damage-sensitive features for early failure prediction of wind turbine blades,” Struct. Control Hlth., e2852 (2021). R. Janeliukstis and M. McGugan, “Control of damage-sensitive features for early failure prediction of wind turbine blades,” Struct. Control Hlth., e2852 (2021).
96.
go back to reference M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation,” in: Australasian Joint Conference on Artificial Intelligence, Springer, 1015-1021 (2006). M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation,” in: Australasian Joint Conference on Artificial Intelligence, Springer, 1015-1021 (2006).
97.
go back to reference S. W. Robert, “Control chart tests based on geometric moving average,” Technometrics, 1, 239-250 (1959).CrossRef S. W. Robert, “Control chart tests based on geometric moving average,” Technometrics, 1, 239-250 (1959).CrossRef
98.
go back to reference A. Bakdi, A. Kouadri, and S. Mekhilef, “A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones,” Renew. Sust. Energ. Rev., 103, 546-555 (2019).CrossRef A. Bakdi, A. Kouadri, and S. Mekhilef, “A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones,” Renew. Sust. Energ. Rev., 103, 546-555 (2019).CrossRef
99.
go back to reference A. Rytter, “Vibration based inspection of civil structures,” Ph.D. thesis, Dept. of Building Technology and structural engineering, Aalborg University, Aalborg, Denmark (1993). A. Rytter, “Vibration based inspection of civil structures,” Ph.D. thesis, Dept. of Building Technology and structural engineering, Aalborg University, Aalborg, Denmark (1993).
100.
go back to reference R. Janeliukstis, S. Rucevskis, and A. Chate, “Condition monitoring with defect localisation in a two-dimensional structure based on linear discriminant and nearest neighbour classification of strain features,” Nondestruc. Test. Eva., 35, No. 1, 48-72 (2020).CrossRef R. Janeliukstis, S. Rucevskis, and A. Chate, “Condition monitoring with defect localisation in a two-dimensional structure based on linear discriminant and nearest neighbour classification of strain features,” Nondestruc. Test. Eva., 35, No. 1, 48-72 (2020).CrossRef
101.
go back to reference R. Janeliukstis, “Continuous wavelet transform-based method for enhancing estimation of wind turbine blade natural frequencies and damping for machine learning purposes,” Measurement, 172, 108897 (2021).CrossRef R. Janeliukstis, “Continuous wavelet transform-based method for enhancing estimation of wind turbine blade natural frequencies and damping for machine learning purposes,” Measurement, 172, 108897 (2021).CrossRef
Metadata
Title
Statistical Structural Integrity Control of Composite Structures Based on an Automatic Operational Modal Analysis — a Review
Authors
R. Janeliukstis
D. Mironovs
A. Safonovs
Publication date
20-05-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10026-1

Other articles of this Issue 2/2022

Mechanics of Composite Materials 2/2022 Go to the issue

Premium Partners