Skip to main content
Top

2024 | OriginalPaper | Chapter

Status Quo, Advances and Futures of Machine Learning in Fault Detection and Diagnosis for Energy: A Review

Authors : Hao Chen, Jianxun Feng, Ailing Jin, Bolun Li

Published in: Proceedings of The 6th International Conference on Clean Energy and Electrical Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fault Detection and Diagnosis (FDD) plays a crucial role in maintaining the integrity and efficient operation of modern industrial systems, from manufacturing sectors to process industries. FDD involves identifying and classifying abnormal conditions that could lead to equipment failure, production inefficiencies, or safety hazards. However, traditional FDD techniques face challenges in handling vast data and complex system dynamics and ensuring timely and accurate fault detection in dynamic environments. Manual inspections and heuristic approaches are inadequate, and statistical process control methods have limitations in capturing complex relationships and adapting to evolving process conditions. To overcome these challenges, advanced techniques such as deep learning-based approaches have emerged, leveraging the capabilities of neural networks for fault detection and diagnosis. These approaches have shown promising results in handling high-dimensional, nonlinear, and time-varying process data. This paper reviews the advancements, challenges, and prospects of deep learning in FDD in industrial systems. Firstly, it discusses the emergence and development of deep learning methods applied to FDD and their applications in relevant fields. Secondly, a new development path that combines deep learning with big data is proposed to address the increasing production data in modern industrial settings. Finally, the opportunities and limitations of deep learning in FDD are clarified, providing insights for future research and development in this area.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbas, J.: Impact of total quality management on corporate green performance through the mediating role of corporate social responsibility. J. Clean. Prod. 242, 118458 (2020)CrossRef Abbas, J.: Impact of total quality management on corporate green performance through the mediating role of corporate social responsibility. J. Clean. Prod. 242, 118458 (2020)CrossRef
2.
go back to reference Arunthavanathan, R., Ahmed, S., Khan, F., Imtiaz, S.: Machine learning for process fault detection and diagnosis. Machine Learning in Chemical Safety and Health: Fundamentals with Applications, pp. 113–137 (2022) Arunthavanathan, R., Ahmed, S., Khan, F., Imtiaz, S.: Machine learning for process fault detection and diagnosis. Machine Learning in Chemical Safety and Health: Fundamentals with Applications, pp. 113–137 (2022)
3.
go back to reference Patel, H.R., Shah, V.A.: Fault detection and diagnosis methods in power generation the Indian power generation sector perspective: an introductory review. PDPU J. Ener. Manage. 2(2), 31–49 (2018) Patel, H.R., Shah, V.A.: Fault detection and diagnosis methods in power generation the Indian power generation sector perspective: an introductory review. PDPU J. Ener. Manage. 2(2), 31–49 (2018)
4.
go back to reference Zhao, Y., Li, T., Zhang, X., Zhang, C.: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 109, 85–101 (2019)CrossRef Zhao, Y., Li, T., Zhang, X., Zhang, C.: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 109, 85–101 (2019)CrossRef
5.
go back to reference Dai, X., Gao, Z.: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis. IEEE Trans. Industr. Inf. 9(4), 2226–2238 (2013)CrossRef Dai, X., Gao, Z.: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis. IEEE Trans. Industr. Inf. 9(4), 2226–2238 (2013)CrossRef
6.
go back to reference Matetić, I., Štajduhar, I., Wolf, I., Ljubic, S.: A review of data-driven approaches and techniques for fault detection and diagnosis in HVAC systems. Sensors 23(1), 1 (2022)CrossRef Matetić, I., Štajduhar, I., Wolf, I., Ljubic, S.: A review of data-driven approaches and techniques for fault detection and diagnosis in HVAC systems. Sensors 23(1), 1 (2022)CrossRef
7.
go back to reference Bersimis, S., Psarakis, S., Panaretos, J.: Multivariate statistical process control charts: an overview. Qual. Reliab. Eng. Int. 23(5), 517–543 (2007)CrossRef Bersimis, S., Psarakis, S., Panaretos, J.: Multivariate statistical process control charts: an overview. Qual. Reliab. Eng. Int. 23(5), 517–543 (2007)CrossRef
8.
go back to reference Labrín, C., Urdinez, F.: Principal component analysis. R for Political Data Science, pp. 375–393. CRC, Chapman and Hall (2020) Labrín, C., Urdinez, F.: Principal component analysis. R for Political Data Science, pp. 375–393. CRC, Chapman and Hall (2020)
9.
go back to reference Md Nor, N., Che Hassan, C.R., Hussain, M.A.: A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems. Rev. Chem. Eng. 36(4), 513–553 (2020)CrossRef Md Nor, N., Che Hassan, C.R., Hussain, M.A.: A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems. Rev. Chem. Eng. 36(4), 513–553 (2020)CrossRef
10.
go back to reference Yang, W., Si, Y., Wang, D., Zhang, G.: A novel method for identifying electrocardiograms using an independent component analysis and principal component analysis network. Measurement 152, 107363 (2020)CrossRef Yang, W., Si, Y., Wang, D., Zhang, G.: A novel method for identifying electrocardiograms using an independent component analysis and principal component analysis network. Measurement 152, 107363 (2020)CrossRef
11.
go back to reference Ji, C., Sun, W.: A review on data-driven process monitoring methods: characterization and mining of industrial data. Processes 10(2), 335 (2022)CrossRef Ji, C., Sun, W.: A review on data-driven process monitoring methods: characterization and mining of industrial data. Processes 10(2), 335 (2022)CrossRef
12.
go back to reference Kaleem, S., Sohail, A., Tariq, M.U., Asim, M.: An improved big data analytics architecture using federated learning for IoT-enabled urban intelligent transportation systems. Sustainability 15(21), 15333 (2023)CrossRef Kaleem, S., Sohail, A., Tariq, M.U., Asim, M.: An improved big data analytics architecture using federated learning for IoT-enabled urban intelligent transportation systems. Sustainability 15(21), 15333 (2023)CrossRef
13.
go back to reference Dargan, S., Kumar, M., Ayyagari, M.R., Kumar, G.: A survey of deep learning and its applications: a new paradigm to machine learning. Archiv. Computat. Methods in Eng. 27, 1071–1092 (2020)MathSciNetCrossRef Dargan, S., Kumar, M., Ayyagari, M.R., Kumar, G.: A survey of deep learning and its applications: a new paradigm to machine learning. Archiv. Computat. Methods in Eng. 27, 1071–1092 (2020)MathSciNetCrossRef
14.
go back to reference Hasan, B.M.S., Abdulazeez, A.M.: A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comp. Data Mining 2(1), 20–30 (2021) Hasan, B.M.S., Abdulazeez, A.M.: A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comp. Data Mining 2(1), 20–30 (2021)
15.
go back to reference Chen, H., Jiang, B., Ding, S.X., Huang, B.: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 23(3), 1700–1716 (2020)CrossRef Chen, H., Jiang, B., Ding, S.X., Huang, B.: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 23(3), 1700–1716 (2020)CrossRef
16.
go back to reference Pilario, K.E., Shafiee, M., Cao, Y., Lao, L., Yang, S.-H.: A review of kernel methods for feature extraction in nonlinear process monitoring. Processes 8(1), 24 (2019)CrossRef Pilario, K.E., Shafiee, M., Cao, Y., Lao, L., Yang, S.-H.: A review of kernel methods for feature extraction in nonlinear process monitoring. Processes 8(1), 24 (2019)CrossRef
17.
go back to reference Shen, H., Jegelka, S., Gretton, A.: Fast kernel ICA using an approximate Newton method. In: Artificial Intelligence and Statistics, pp. 476–483. PMLR (2007) Shen, H., Jegelka, S., Gretton, A.: Fast kernel ICA using an approximate Newton method. In: Artificial Intelligence and Statistics, pp. 476–483. PMLR (2007)
18.
go back to reference Müller, K.R., Mika, S., Tsuda, K., et al.: An introduction to kernel-based learning algorithms. Handbook of Neural Network Signal Processing. CRC Press (2018). 4-1-4-40 Müller, K.R., Mika, S., Tsuda, K., et al.: An introduction to kernel-based learning algorithms. Handbook of Neural Network Signal Processing. CRC Press (2018). 4-1-4-40
19.
go back to reference Kim, S., Choi, J.W., Shim, B.: Downlink pilot precoding and compressed channel feedback for FDD-based cell-free systems. IEEE Trans. Wireless Commun. 19(6), 3658–3672 (2020)CrossRef Kim, S., Choi, J.W., Shim, B.: Downlink pilot precoding and compressed channel feedback for FDD-based cell-free systems. IEEE Trans. Wireless Commun. 19(6), 3658–3672 (2020)CrossRef
20.
go back to reference Adams, S., Beling, P.A.: A survey of feature selection methods for Gaussian mixture models and hidden Markov models. Artif. Intell. Rev. 52, 1739–1779 (2019)CrossRef Adams, S., Beling, P.A.: A survey of feature selection methods for Gaussian mixture models and hidden Markov models. Artif. Intell. Rev. 52, 1739–1779 (2019)CrossRef
21.
go back to reference Diaz-Rozo, J., Bielza, C., Larrañaga, P.: Clustering of data streams with dynamic Gaussian mixture models: An IoT application in industrial processes. IEEE Internet Things J. 5(5), 3533–3547 (2018)CrossRef Diaz-Rozo, J., Bielza, C., Larrañaga, P.: Clustering of data streams with dynamic Gaussian mixture models: An IoT application in industrial processes. IEEE Internet Things J. 5(5), 3533–3547 (2018)CrossRef
22.
go back to reference Ramesh, P., Wilpon, J.G.: Modeling state durations in hidden Markov models for automatic speech recognition. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on, vol. 1, pp. 381–384. IEEE Computer Society (1992) Ramesh, P., Wilpon, J.G.: Modeling state durations in hidden Markov models for automatic speech recognition. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on, vol. 1, pp. 381–384. IEEE Computer Society (1992)
23.
go back to reference Li, G., Qin, S.J.: Comparative study on monitoring schemes for non-Gaussian distributed processes. J. Process Control 67, 69–82 (2018)CrossRef Li, G., Qin, S.J.: Comparative study on monitoring schemes for non-Gaussian distributed processes. J. Process Control 67, 69–82 (2018)CrossRef
24.
go back to reference Van Hulle, M.M.: Self-organizing Maps. Handbook of Natural Computing 1, 585–622 (2012)CrossRef Van Hulle, M.M.: Self-organizing Maps. Handbook of Natural Computing 1, 585–622 (2012)CrossRef
25.
go back to reference Yan, K., Ma, L., Dai, Y., et al.: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis. Int. J. Refrig 86, 401–409 (2018)CrossRef Yan, K., Ma, L., Dai, Y., et al.: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis. Int. J. Refrig 86, 401–409 (2018)CrossRef
26.
go back to reference Aggarwal, C.C.: Neural networks and deep learning. Springer 10(978), 3 (2018) Aggarwal, C.C.: Neural networks and deep learning. Springer 10(978), 3 (2018)
27.
go back to reference Bayoudh, K., Knani, R., Hamdaoui, F., Mtibaa, A.: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. The Visual Computer, 1–32 (2021) Bayoudh, K., Knani, R., Hamdaoui, F., Mtibaa, A.: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. The Visual Computer, 1–32 (2021)
28.
go back to reference Chung, I.-H., et al.: Parallel deep neural network training for big data on blue gene/q. IEEE Trans. Parallel Distrib. Syst. 28(6), 1703–1714 (2016)CrossRef Chung, I.-H., et al.: Parallel deep neural network training for big data on blue gene/q. IEEE Trans. Parallel Distrib. Syst. 28(6), 1703–1714 (2016)CrossRef
29.
go back to reference Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The computational limits of deep learning. arXiv preprint arXiv:2007.05558 (2020) Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The computational limits of deep learning. arXiv preprint arXiv:​2007.​05558 (2020)
30.
go back to reference L’heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.: Machine learning with big data: Challenges and approaches. Ieee Access 5, 7776–7797 (2017) L’heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.: Machine learning with big data: Challenges and approaches. Ieee Access 5, 7776–7797 (2017)
31.
go back to reference Khalil, R.A., Saeed, N., Masood, M., Fard, Y.M., Alouini, M.-S., Al-Naffouri, T.Y.: Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet Things J. 8(14), 11016–11040 (2021)CrossRef Khalil, R.A., Saeed, N., Masood, M., Fard, Y.M., Alouini, M.-S., Al-Naffouri, T.Y.: Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet Things J. 8(14), 11016–11040 (2021)CrossRef
32.
go back to reference Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.: Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review. Ieee Access 7, 122644–122662 (2019)CrossRef Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.: Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review. Ieee Access 7, 122644–122662 (2019)CrossRef
33.
go back to reference Park, Y.J., Fan, S.K.S., Hsu, C.Y.: A review on fault detection and process diagnostics in industrial processes. Processes 8(9), 1123 (2020)CrossRef Park, Y.J., Fan, S.K.S., Hsu, C.Y.: A review on fault detection and process diagnostics in industrial processes. Processes 8(9), 1123 (2020)CrossRef
34.
go back to reference Mirnaghi, M.S., Haghighat, F.: Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review. Energy and Buildings 229, 110492 (2020)CrossRef Mirnaghi, M.S., Haghighat, F.: Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review. Energy and Buildings 229, 110492 (2020)CrossRef
35.
go back to reference Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021)CrossRef Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021)CrossRef
36.
go back to reference Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. Journal of Big Data 2(1), 1–21 (2015)CrossRef Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. Journal of Big Data 2(1), 1–21 (2015)CrossRef
37.
go back to reference Zhang, X., Li, G., Zhang, J., Hu, A., Hou, Z., Xiao, B.: Deep-learning-based physical-layer secret key generation for FDD systems. IEEE Internet Things J. 9(8), 6081–6094 (2021)CrossRef Zhang, X., Li, G., Zhang, J., Hu, A., Hou, Z., Xiao, B.: Deep-learning-based physical-layer secret key generation for FDD systems. IEEE Internet Things J. 9(8), 6081–6094 (2021)CrossRef
38.
go back to reference Sadati, N., Nezhad, M.Z., Chinnam, R.B., Zhu, D.: Representation learning with autoencoders for electronic health records: a comparative study. arXiv preprint arXiv:1801.02961 (2018) Sadati, N., Nezhad, M.Z., Chinnam, R.B., Zhu, D.: Representation learning with autoencoders for electronic health records: a comparative study. arXiv preprint arXiv:​1801.​02961 (2018)
39.
go back to reference Wang, Z., et al.: Facilitating energy monitoring and fault diagnosis of pneumatic cylinders with exergy and machine learning. Int. J. Fluid Power, 643–682-643–682 (2023) Wang, Z., et al.: Facilitating energy monitoring and fault diagnosis of pneumatic cylinders with exergy and machine learning. Int. J. Fluid Power, 643–682-643–682 (2023)
40.
go back to reference Da Silva, I.N., Hernane Spatti, D., Andrade Flauzino, R., et al.: Artificial Neural Network Architectures and Training Processes. Springer International Publishing (2017) Da Silva, I.N., Hernane Spatti, D., Andrade Flauzino, R., et al.: Artificial Neural Network Architectures and Training Processes. Springer International Publishing (2017)
41.
go back to reference Abid, A., Khan, M.T., Iqbal, J.: A review on fault detection and diagnosis techniques: basics and beyond. Artif. Intell. Rev. 54, 3639–3664 (2021)CrossRef Abid, A., Khan, M.T., Iqbal, J.: A review on fault detection and diagnosis techniques: basics and beyond. Artif. Intell. Rev. 54, 3639–3664 (2021)CrossRef
42.
go back to reference Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRef Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRef
43.
go back to reference Benaroch, M.: Real options models for proactive uncertainty-reducing mitigations and applications in cybersecurity investment decision making. Inf. Syst. Res. 29(2), 315–340 (2018)CrossRef Benaroch, M.: Real options models for proactive uncertainty-reducing mitigations and applications in cybersecurity investment decision making. Inf. Syst. Res. 29(2), 315–340 (2018)CrossRef
44.
go back to reference Han, X., Wang, Z., Xie, M., He, Y., Li, Y., Wang, W.: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Reliab. Eng. Syst. Saf. 210, 107560 (2021)CrossRef Han, X., Wang, Z., Xie, M., He, Y., Li, Y., Wang, W.: Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Reliab. Eng. Syst. Saf. 210, 107560 (2021)CrossRef
45.
go back to reference Jaen-Cuellar, A.Y., Elvira-Ortiz, D.A., Osornio-Rios, R.A., Antonino-Daviu, J.A.: Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review. Energies 15(15), 5404 (2022)CrossRef Jaen-Cuellar, A.Y., Elvira-Ortiz, D.A., Osornio-Rios, R.A., Antonino-Daviu, J.A.: Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review. Energies 15(15), 5404 (2022)CrossRef
46.
go back to reference Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.: Real-time big data processing for anomaly detection: a survey. Int. J. Inf. Manage. 45, 289–307 (2019)CrossRef Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.: Real-time big data processing for anomaly detection: a survey. Int. J. Inf. Manage. 45, 289–307 (2019)CrossRef
47.
go back to reference Zhu, Z., et al.: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement, 112346 (2022) Zhu, Z., et al.: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement, 112346 (2022)
48.
go back to reference Yu, J.: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis. Comput. Ind. 108, 62–72 (2019)CrossRef Yu, J.: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis. Comput. Ind. 108, 62–72 (2019)CrossRef
49.
go back to reference Shaik, M.A.: Fault Diagnosis of Engine Knocking Using Deep Learning Neural Networks with Acoustic Input Processing. Purdue University Graduate School (2022) Shaik, M.A.: Fault Diagnosis of Engine Knocking Using Deep Learning Neural Networks with Acoustic Input Processing. Purdue University Graduate School (2022)
51.
go back to reference Wen, X., Shan, J., He, Y., Song, K.: Steel surface defect recognition: a survey. Coatings 13(1), 17 (2022)CrossRef Wen, X., Shan, J., He, Y., Song, K.: Steel surface defect recognition: a survey. Coatings 13(1), 17 (2022)CrossRef
52.
go back to reference Liu, Y., Hajj, M., Bao, Y.: Review of robot-based damage assessment for offshore wind turbines. Renew. Sustain. Energy Rev. 158, 112187 (2022)CrossRef Liu, Y., Hajj, M., Bao, Y.: Review of robot-based damage assessment for offshore wind turbines. Renew. Sustain. Energy Rev. 158, 112187 (2022)CrossRef
53.
go back to reference Zhao, Y., Ding, B., Zhang, Y., Yang, L., Hao, X.: Online cement clinker quality monitoring: a soft sensor model based on multivariate time series analysis and CNN. ISA Trans. 117, 180–195 (2021)CrossRef Zhao, Y., Ding, B., Zhang, Y., Yang, L., Hao, X.: Online cement clinker quality monitoring: a soft sensor model based on multivariate time series analysis and CNN. ISA Trans. 117, 180–195 (2021)CrossRef
54.
go back to reference Taheri, S., Ahmadi, A., Mohammadi-Ivatloo, B., Asadi, S.: Fault detection diagnostic for HVAC systems via deep learning algorithms. Energy and Buildings 250, 111275 (2021)CrossRef Taheri, S., Ahmadi, A., Mohammadi-Ivatloo, B., Asadi, S.: Fault detection diagnostic for HVAC systems via deep learning algorithms. Energy and Buildings 250, 111275 (2021)CrossRef
55.
go back to reference Chien, H.-Y.S., et al.: Slower is better: revisiting the forgetting mechanism in LSTM for Slower information decay. arXiv preprint arXiv:2105.05944 (2021) Chien, H.-Y.S., et al.: Slower is better: revisiting the forgetting mechanism in LSTM for Slower information decay. arXiv preprint arXiv:​2105.​05944 (2021)
56.
go back to reference Wang, S., Zhao, Q., Han, Y., Wang, J.: Root cause diagnosis for process faults based on multisensor time-series causality discovery. J. Process Control 122, 27–40 (2023)CrossRef Wang, S., Zhao, Q., Han, Y., Wang, J.: Root cause diagnosis for process faults based on multisensor time-series causality discovery. J. Process Control 122, 27–40 (2023)CrossRef
57.
go back to reference Ren, L., Jia, Z., Laili, Y., Huang, D.: Deep Learning for Time-Series Prediction in IIoT: Progress, Challenges, and Prospects. IEEE Trans. Neural Netw. Learn. Sys. (2023) Ren, L., Jia, Z., Laili, Y., Huang, D.: Deep Learning for Time-Series Prediction in IIoT: Progress, Challenges, and Prospects. IEEE Trans. Neural Netw. Learn. Sys. (2023)
58.
go back to reference Hua, Y., Guo, J., Zhao, H.: Deep belief networks and deep learning. In: Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, pp. 1–4. IEEE (2015) Hua, Y., Guo, J., Zhao, H.: Deep belief networks and deep learning. In: Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, pp. 1–4. IEEE (2015)
59.
go back to reference Zhang, L., Zhang, L., Du, B.: Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4(2), 22–40 (2016)CrossRef Zhang, L., Zhang, L., Du, B.: Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4(2), 22–40 (2016)CrossRef
60.
go back to reference Cheng, S., Chen, J., Wang, L.: Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy 20(8), 583 (2018)CrossRef Cheng, S., Chen, J., Wang, L.: Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy 20(8), 583 (2018)CrossRef
61.
go back to reference Manikandan, S., Duraivelu, K.: Fault diagnosis of various rotating equipment using machine learning approaches–A review. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235(2), 629–642 (2021)CrossRef Manikandan, S., Duraivelu, K.: Fault diagnosis of various rotating equipment using machine learning approaches–A review. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235(2), 629–642 (2021)CrossRef
62.
go back to reference Nasir, V., Sassani, F.: A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges. The Int. J. Advan. Manufact. Technol. 115(9–10), 2683–2709 (2021)CrossRef Nasir, V., Sassani, F.: A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges. The Int. J. Advan. Manufact. Technol. 115(9–10), 2683–2709 (2021)CrossRef
Metadata
Title
Status Quo, Advances and Futures of Machine Learning in Fault Detection and Diagnosis for Energy: A Review
Authors
Hao Chen
Jianxun Feng
Ailing Jin
Bolun Li
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-5775-6_12