Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Steady Inviscid Vortex Rings

Authors : Ionut Danaila, Felix Kaplanski, Sergei S. Sazhin

Published in: Vortex Ring Models

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most of the vortex ring models developed so far are based on the hypothesis of an inviscid and steady fluid flow. Deriving these classical and idealistic models is a useful first exercise for anyone interested in the mathematical modelling of vortex rings. We first derive a fundamental solution to the vorticity equation using the Green function. This solution is then used to describe the circular vortex filament, characterised by an infinitely small core and singular vorticity distribution. A closed-form solution for the vortex filament is also provided using the Fourier–Haenkel transform. We subsequently introduce the general solution for the steady inviscid vortex ring with finite core size. As a particular case, we present Hill’s spherical vortex ring, which is the only known closed analytical solution for this problem. For a general shape of the vortex core, the Norbury–Fraenkel family of inviscid vortex rings is obtained by numerical calculation. This very popular model is described in detail. The existence of solutions for inviscid vortex rings with fixed elliptical cross section is also addressed. Finally, we derive the famous Kelvin’s formula for the translational velocity of the vortex ring. As a practical application of this theory, we finally address the problem of the reconstruction of the velocity field of a vortex ring using theoretical models or optimisation approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
FreeFem++ (www.​freefem.​org) (Hecht et al. 2007; Hecht 2012) is a free software that was extensively used to produce illustrations in this book. It offers a very easy-to-use framework to solve partial differential equations and post-process data obtained from the DNS simulations of vortex rings (see Chaps. 3 and 4).
 
Literature
go back to reference Akhmetov DG (2009) Vortex Rings. Springer, Berlin, Heidelberg Akhmetov DG (2009) Vortex Rings. Springer, Berlin, Heidelberg
go back to reference Ambrosetti A, Struwe M (1989) Existence of steady vortex rings in an ideal fluid. Arch Rational Mech Anal 108(2):97–109 Ambrosetti A, Struwe M (1989) Existence of steady vortex rings in an ideal fluid. Arch Rational Mech Anal 108(2):97–109
go back to reference Amick CJ, Fraenkel LE (1986) The uniqueness of Hill’s spherical vortex. Arch Rational Mech Anal 92:91–119 Amick CJ, Fraenkel LE (1986) The uniqueness of Hill’s spherical vortex. Arch Rational Mech Anal 92:91–119
go back to reference Amick CJ, Fraenkel LE (1988) The uniqueness of a family of vortex rings. Arch Rational Mech Anal 207–241 Amick CJ, Fraenkel LE (1988) The uniqueness of a family of vortex rings. Arch Rational Mech Anal 207–241
go back to reference Batchelor GK (1988) An Introduction to Fluid Dynamics, 7th edn. Cambridge University Press, Cambridge, New York Batchelor GK (1988) An Introduction to Fluid Dynamics, 7th edn. Cambridge University Press, Cambridge, New York
go back to reference Berestycki H, Fernandez Cara E, Glowinski R (1984) A numerical study of some questions in vortex ring theory. RAIRO Analyse numérique 18:7–85 Berestycki H, Fernandez Cara E, Glowinski R (1984) A numerical study of some questions in vortex ring theory. RAIRO Analyse numérique 18:7–85
go back to reference Brasseur JG (1979) Kinematics and dynamics of vortex rings in a tube. PhD Thesis, report JIAA, TR-26, Joint Institute for Aeronautics and Acoustics, Dept. of Aeronautics and Astronautics, Stanford University Brasseur JG (1979) Kinematics and dynamics of vortex rings in a tube. PhD Thesis, report JIAA, TR-26, Joint Institute for Aeronautics and Acoustics, Dept. of Aeronautics and Astronautics, Stanford University
go back to reference Bukshtynov V, Protas B (2013) Optimal reconstruction of material properties in complex multiphysics phenomena. J Comput Phys 242:889–914MathSciNetCrossRef Bukshtynov V, Protas B (2013) Optimal reconstruction of material properties in complex multiphysics phenomena. J Comput Phys 242:889–914MathSciNetCrossRef
go back to reference Callegari A, Ting L (1978) Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J Appl Maths 35:148–175MathSciNetCrossRef Callegari A, Ting L (1978) Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J Appl Maths 35:148–175MathSciNetCrossRef
go back to reference Danaila I, Helie J (2008) Numerical simulation of the postformation evolution of a laminar vortex ring. Phys Fluids 20:073602 Danaila I, Helie J (2008) Numerical simulation of the postformation evolution of a laminar vortex ring. Phys Fluids 20:073602
go back to reference Danaila I, Protas B (2015) Optimal reconstruction of inviscid vortices. Proc R Soc A: Math Phys Eng Sci 471:20150323MathSciNetCrossRef Danaila I, Protas B (2015) Optimal reconstruction of inviscid vortices. Proc R Soc A: Math Phys Eng Sci 471:20150323MathSciNetCrossRef
go back to reference Durst F, Schönung B, Simons M (1981) Steady ellipsoidal vortex rings with finite cores. J Appl Math Phys (ZAMP) 32:156–169CrossRef Durst F, Schönung B, Simons M (1981) Steady ellipsoidal vortex rings with finite cores. J Appl Math Phys (ZAMP) 32:156–169CrossRef
go back to reference Dyson FW (1893) The potential of an anchor ring. Philos Trans R Soc Lond Ser A184:1041–1106MATH Dyson FW (1893) The potential of an anchor ring. Philos Trans R Soc Lond Ser A184:1041–1106MATH
go back to reference Esteban MJ (1983) Nonlinear elliptic problems in strip–like domains: symmetry of positive vortex rings. Nonlinear Anal Theory Methods Appl 7:365–379 Esteban MJ (1983) Nonlinear elliptic problems in strip–like domains: symmetry of positive vortex rings. Nonlinear Anal Theory Methods Appl 7:365–379
go back to reference Fraenkel LE (1970) On steady vortex rings of small cross-section in an ideal fluid. Proc R Soc Lond A 316:29 Fraenkel LE (1970) On steady vortex rings of small cross-section in an ideal fluid. Proc R Soc Lond A 316:29
go back to reference Fraenkel LE (1972) Examples of steady vortex rings of small cross-section in an ideal fluid. J Fluid Mech 51:119 Fraenkel LE (1972) Examples of steady vortex rings of small cross-section in an ideal fluid. J Fluid Mech 51:119
go back to reference Fraenkel LE, Berger MS (1974) A global theory of steady vortex rings in an ideal fluid. Acta Math 132:13–51 Fraenkel LE, Berger MS (1974) A global theory of steady vortex rings in an ideal fluid. Acta Math 132:13–51
go back to reference Gradshtein I, Ryzhik IM (1965) Tables of Integrals. Academic Press, New York Gradshtein I, Ryzhik IM (1965) Tables of Integrals. Academic Press, New York
go back to reference Helmholtz H (1858) On integrals of the hydrodynamical equations which express vortex-motion. Crelle’s J 55:485–512MathSciNet Helmholtz H (1858) On integrals of the hydrodynamical equations which express vortex-motion. Crelle’s J 55:485–512MathSciNet
go back to reference Hill MJM (1894) On a spherical vortex. Philos Trans R Soc Lond A185:213–245 Hill MJM (1894) On a spherical vortex. Philos Trans R Soc Lond A185:213–245
go back to reference Kelvin L (1867) The translatory velocity of a circular vortex ring. Phil Mag 4:511–512 Kelvin L (1867) The translatory velocity of a circular vortex ring. Phil Mag 4:511–512
go back to reference Lamb H (1932) Hydrodynamics. Dover, New York Lamb H (1932) Hydrodynamics. Dover, New York
go back to reference Linden PF, Turner JS (2001) The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. J Fluid Mech 427:61–72 Linden PF, Turner JS (2001) The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. J Fluid Mech 427:61–72
go back to reference Meleshko VV (2010) Coaxial axisymmetric vortex rings: 150 years after Helmholtz. Theor Comput Fluid Dyn 24:403–431CrossRef Meleshko VV (2010) Coaxial axisymmetric vortex rings: 150 years after Helmholtz. Theor Comput Fluid Dyn 24:403–431CrossRef
go back to reference Mohseni K, Gharib M (1998) A model for universal time scale of vortex ring formation. Phys Fluids 10:2436–2438 Mohseni K, Gharib M (1998) A model for universal time scale of vortex ring formation. Phys Fluids 10:2436–2438
go back to reference Moore DW (1980) The velocity of a vortex ring with a thin core of elliptical cross section. Proc R Soc Lond A 370:407–415 Moore DW (1980) The velocity of a vortex ring with a thin core of elliptical cross section. Proc R Soc Lond A 370:407–415
go back to reference Neuberger JW (1997) Sobolev Gradients and Differential Equations. Lecture notes in mathematics, vol 1670. Springer, Berlin Neuberger JW (1997) Sobolev Gradients and Differential Equations. Lecture notes in mathematics, vol 1670. Springer, Berlin
go back to reference Ni WM (1980) On the existence of global vortex rings. J d’Analyse Math 37:208–247 Ni WM (1980) On the existence of global vortex rings. J d’Analyse Math 37:208–247
go back to reference Norbury J (1972) A steady vortex ring close to Hill’s spherical vortex. Proc Cambridge Phil Soc 72:253–282 Norbury J (1972) A steady vortex ring close to Hill’s spherical vortex. Proc Cambridge Phil Soc 72:253–282
go back to reference Norbury J (1973) A family of steady vortex rings. J Fluid Mech 57:417–431 Norbury J (1973) A family of steady vortex rings. J Fluid Mech 57:417–431
go back to reference Saffman PG (1970) The velocity of viscous vortex rings. Stud Appl Math 49:371–380CrossRef Saffman PG (1970) The velocity of viscous vortex rings. Stud Appl Math 49:371–380CrossRef
go back to reference Saffman PG (1992) Vortex Dynamics. Cambridge University Press, Cambridge, New York Saffman PG (1992) Vortex Dynamics. Cambridge University Press, Cambridge, New York
go back to reference Shusser M, Gharib M (2000) Energy and velocity of a forming vortex ring. Phys Fluids 12:618 Shusser M, Gharib M (2000) Energy and velocity of a forming vortex ring. Phys Fluids 12:618
go back to reference Stewart K, Niebel C, Jung S, Vlachos P (2012) The decay of confined vortex rings. Exp Fluids 53:163–171CrossRef Stewart K, Niebel C, Jung S, Vlachos P (2012) The decay of confined vortex rings. Exp Fluids 53:163–171CrossRef
go back to reference Sullivan J (1973) Study of a vortex ring using a laser doppler velocimeter. AIAA J 11:1384–1389CrossRef Sullivan J (1973) Study of a vortex ring using a laser doppler velocimeter. AIAA J 11:1384–1389CrossRef
go back to reference Tadie, (1994) On the bifurcation of steady vortex rings from a Green function. Math Proc Camb Phil Soc 116:555–568 Tadie, (1994) On the bifurcation of steady vortex rings from a Green function. Math Proc Camb Phil Soc 116:555–568
go back to reference Tait P (1876) Lectures on some recent advances in physical science, with a special lecture on force. Macmillan, London Tait P (1876) Lectures on some recent advances in physical science, with a special lecture on force. Macmillan, London
go back to reference Wang CY (1990) Exact solutions of the Navier-Stokes equations - the generalized Beltrami flows, review and extension. Acta Mech 81:69–74 Wang CY (1990) Exact solutions of the Navier-Stokes equations - the generalized Beltrami flows, review and extension. Acta Mech 81:69–74
go back to reference Wu JZ, Ma HY, Zhou MD (2006) Vorticity and Vortex Dynamics. Springer, Berlin, Heidelberg Wu JZ, Ma HY, Zhou MD (2006) Vorticity and Vortex Dynamics. Springer, Berlin, Heidelberg
go back to reference Zhang Y, Danaila I (2012) A finite element BFGS algorithm for the reconstruction of the flow field generated by vortex rings. J Numer Math 20:325–340MathSciNetCrossRef Zhang Y, Danaila I (2012) A finite element BFGS algorithm for the reconstruction of the flow field generated by vortex rings. J Numer Math 20:325–340MathSciNetCrossRef
go back to reference Zhang Y, Danaila I (2013) Existence and numerical modelling of vortex rings with elliptic boundaries. Appl Math Model 37:4809–4824MathSciNetCrossRef Zhang Y, Danaila I (2013) Existence and numerical modelling of vortex rings with elliptic boundaries. Appl Math Model 37:4809–4824MathSciNetCrossRef
Metadata
Title
Steady Inviscid Vortex Rings
Authors
Ionut Danaila
Felix Kaplanski
Sergei S. Sazhin
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68150-0_2

Premium Partners