Skip to main content
Top
Published in: Topics in Catalysis 6-9/2014

01-04-2014 | Original Paper

Steady-State Attainment Period for Fischer–Tropsch Products

Authors: Cornelius Mduduzi Masuku, Diane Hildebrandt, David Glasser, Burtron H. Davis

Published in: Topics in Catalysis | Issue 6-9/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In studying the mechanism of the Fischer–Tropsch (FT) reaction, deuterium tracer techniques have been widely used and several important conclusions have been reported. A novel combination of experiment and modelling to quantify the residence times of long chain hydrocarbons using deuterium tracing has been devised. In this study, the effect of variation of residence time with carbon number on the olefin to paraffin ratio is investigated and also the time required for each hydrocarbon to reach steady state is determined. The results show that the olefin to paraffin ratio decreases with increasing carbon number which is consistent with olefin readsorption but not necessarily diffusion enhanced olefin readsorption. Therefore, chain length-dependent solubility in the liquid phase should be the predominant cause for chain length-dependencies of secondary olefin reactions in FT synthesis. Furthermore, the results show that it takes around 100 h for the overall/total mole fractions to reach steady state. Therefore, actual compositions (mole fractions) equilibrate faster even though actual flows (moles/h) might still be changing. Hence, for practical purposes the total mole fraction can be used as a guide to establish steady state.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Glasser D, Hildebrandt D, Liu X, Lu X, Masuku CM (2012) Recent advances in understanding the Fischer–Tropsch synthesis (FTS) reaction. Curr Opin Chem Eng 1:296–302CrossRef Glasser D, Hildebrandt D, Liu X, Lu X, Masuku CM (2012) Recent advances in understanding the Fischer–Tropsch synthesis (FTS) reaction. Curr Opin Chem Eng 1:296–302CrossRef
2.
go back to reference Dry ME (1982) Catalytic aspects of industrial Fischer–Tropsch synthesis. J Mol Catal 17:133–144CrossRef Dry ME (1982) Catalytic aspects of industrial Fischer–Tropsch synthesis. J Mol Catal 17:133–144CrossRef
3.
go back to reference Iglesia E, Reyes SC, Madon RJ (1991) Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. J Catal 129:238–256CrossRef Iglesia E, Reyes SC, Madon RJ (1991) Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. J Catal 129:238–256CrossRef
4.
go back to reference Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer–Tropsch synthesis: sites, pellets, and reactors. Adv Catal 39:221–302 Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer–Tropsch synthesis: sites, pellets, and reactors. Adv Catal 39:221–302
5.
go back to reference Kuipers EW, Scheper C, Wilson JH, Vinkenburg IH, Oosterbeek H (1996) Non-ASF product distributions due to secondary reactions during Fischer–Tropsch synthesis. J Catal 158:288–300CrossRef Kuipers EW, Scheper C, Wilson JH, Vinkenburg IH, Oosterbeek H (1996) Non-ASF product distributions due to secondary reactions during Fischer–Tropsch synthesis. J Catal 158:288–300CrossRef
6.
go back to reference Madon RJ, Iglesia E (1994) Hydrogen and CO intrapellet diffusion effects in ruthenium-catalyzed hydrocarbon synthesis. J Catal 149:428–437CrossRef Madon RJ, Iglesia E (1994) Hydrogen and CO intrapellet diffusion effects in ruthenium-catalyzed hydrocarbon synthesis. J Catal 149:428–437CrossRef
7.
go back to reference Schulz H, Claeys M (1999) Reactions of α-olefins of different chain length added during Fischer–Tropsch synthesis on a cobalt catalyst in a slurry reactor. Appl Catal A Gen 186:71–90CrossRef Schulz H, Claeys M (1999) Reactions of α-olefins of different chain length added during Fischer–Tropsch synthesis on a cobalt catalyst in a slurry reactor. Appl Catal A Gen 186:71–90CrossRef
8.
go back to reference Dictor R, Bell AT (1986) Fischer–Tropsch synthesis over reduced and unreduced iron oxide catalysts. J Catal 97:121–136CrossRef Dictor R, Bell AT (1986) Fischer–Tropsch synthesis over reduced and unreduced iron oxide catalysts. J Catal 97:121–136CrossRef
9.
go back to reference Dictor R, Bell AT (1986) Studies of Fischer–Tropsch synthesis over a fused iron catalyst. Appl Catal 20:145–162CrossRef Dictor R, Bell AT (1986) Studies of Fischer–Tropsch synthesis over a fused iron catalyst. Appl Catal 20:145–162CrossRef
10.
go back to reference Tau L-M, Dabbagh HA, Davis BH (1990) Fischer–Tropsch synthesis: 14C tracer study of alkene incorporation. Energy Fuels 4:94–99CrossRef Tau L-M, Dabbagh HA, Davis BH (1990) Fischer–Tropsch synthesis: 14C tracer study of alkene incorporation. Energy Fuels 4:94–99CrossRef
11.
go back to reference Thompson SO, Turkevich J, Irsa AP (1951) Reaction of deuterium with hydrocarbons over a cobalt–thoria Fischer–Tropsch catalyst. J Am Chem Soc 73:5213–5215CrossRef Thompson SO, Turkevich J, Irsa AP (1951) Reaction of deuterium with hydrocarbons over a cobalt–thoria Fischer–Tropsch catalyst. J Am Chem Soc 73:5213–5215CrossRef
12.
go back to reference Thompson SO, Turkevich J, Irsa AP (1952) Study of the Fischer–Tropsch reaction using deuterium gas. J Phys Chem 56:243–250CrossRef Thompson SO, Turkevich J, Irsa AP (1952) Study of the Fischer–Tropsch reaction using deuterium gas. J Phys Chem 56:243–250CrossRef
13.
go back to reference Anderson JR, Kemball C (1955) The catalytic reaction between aliphatic alcohols and deuterium. Trans Faraday Soc 51:966–973CrossRef Anderson JR, Kemball C (1955) The catalytic reaction between aliphatic alcohols and deuterium. Trans Faraday Soc 51:966–973CrossRef
14.
go back to reference Kellner CS, Bell AT (1981) Evidence for H2/D2 isotope effects on Fischer–Tropsch Synthesis over supported ruthenium catalysts. J Catal 67:175–185CrossRef Kellner CS, Bell AT (1981) Evidence for H2/D2 isotope effects on Fischer–Tropsch Synthesis over supported ruthenium catalysts. J Catal 67:175–185CrossRef
15.
go back to reference Shi B, O’Brien RJ, Bao S, Davis BH (2001) Mechanism of the isomerization of 1-alkene during iron-catalyzed Fischer–Tropsch synthesis. J Catal 199:202–208CrossRef Shi B, O’Brien RJ, Bao S, Davis BH (2001) Mechanism of the isomerization of 1-alkene during iron-catalyzed Fischer–Tropsch synthesis. J Catal 199:202–208CrossRef
16.
go back to reference Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) Variation of residence time with chain length for products in a slurry-phase Fischer–Tropsch reactor. J Catal 287:93–101CrossRef Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) Variation of residence time with chain length for products in a slurry-phase Fischer–Tropsch reactor. J Catal 287:93–101CrossRef
17.
go back to reference Satterfield CN, Huff GA (1982) Carbon number distribution of Fischer–Tropsch products formed on an iron catalyst in a slurry reactor. J Catal 73:187–197CrossRef Satterfield CN, Huff GA (1982) Carbon number distribution of Fischer–Tropsch products formed on an iron catalyst in a slurry reactor. J Catal 73:187–197CrossRef
18.
go back to reference Huff GA, Satterfield CN (1984) Evidence for two chain growth probabilities on iron catalysts in the Fischer–Tropsch synthesis. J Catal 85:370–379CrossRef Huff GA, Satterfield CN (1984) Evidence for two chain growth probabilities on iron catalysts in the Fischer–Tropsch synthesis. J Catal 85:370–379CrossRef
19.
go back to reference Masuku CM, Ma W, Hildebrandt D, Glasser D, Davis BH (2012) A vapor–liquid equilibrium thermodynamic model for a Fischer–Tropsch reactor. Fluid Phase Equilib 314:38–45CrossRef Masuku CM, Ma W, Hildebrandt D, Glasser D, Davis BH (2012) A vapor–liquid equilibrium thermodynamic model for a Fischer–Tropsch reactor. Fluid Phase Equilib 314:38–45CrossRef
20.
go back to reference Yang J, Tveten EZ, Chen D, Holmen A (2010) Understanding the effect of cobalt particle size on Fischer–Tropsch synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect. Langmuir 26(21):16558–16567CrossRef Yang J, Tveten EZ, Chen D, Holmen A (2010) Understanding the effect of cobalt particle size on Fischer–Tropsch synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect. Langmuir 26(21):16558–16567CrossRef
21.
go back to reference Shi B, Jin C (2011) Inverse kinetic isotope effects and deuterium enrichment as a function of carbon number during formation of C–C bonds in cobalt catalyzed Fischer–Tropsch synthesis. Appl Catal A Gen 393:178–183CrossRef Shi B, Jin C (2011) Inverse kinetic isotope effects and deuterium enrichment as a function of carbon number during formation of C–C bonds in cobalt catalyzed Fischer–Tropsch synthesis. Appl Catal A Gen 393:178–183CrossRef
22.
go back to reference Lewis GN, Hanson WT (1934) The vapor pressure of solid and liquid deuterium and the heats of sublimation, of fusion and of vaporization. J Am Chem Soc 56:1687–1690CrossRef Lewis GN, Hanson WT (1934) The vapor pressure of solid and liquid deuterium and the heats of sublimation, of fusion and of vaporization. J Am Chem Soc 56:1687–1690CrossRef
23.
go back to reference Scott RB, Brickwedde FG, Urey HC, Wahl MH (1934) The vapor pressures and derived thermal properties of hydrogen and deuterium. J Chem Phys 2:454–464CrossRef Scott RB, Brickwedde FG, Urey HC, Wahl MH (1934) The vapor pressures and derived thermal properties of hydrogen and deuterium. J Chem Phys 2:454–464CrossRef
24.
go back to reference Grilly ER (1951) The vapor pressures of hydrogen, deuterium and tritium up to three atmospheres. J Am Chem Soc 73:843–846CrossRef Grilly ER (1951) The vapor pressures of hydrogen, deuterium and tritium up to three atmospheres. J Am Chem Soc 73:843–846CrossRef
25.
go back to reference Madon RJ, Reyes SC, Iglesia E (1991) Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. J Phys Chem 95:7795–7804CrossRef Madon RJ, Reyes SC, Iglesia E (1991) Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. J Phys Chem 95:7795–7804CrossRef
26.
go back to reference Madon RJ, Iglesia E (1993) The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts. J Catal 139:576–590CrossRef Madon RJ, Iglesia E (1993) The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts. J Catal 139:576–590CrossRef
27.
go back to reference Komaya T, Bell AT (1994) Estimates of rate coefficients for elementary processes occurring during Fischer–Tropsch synthesis over Ru/TiO2. J Catal 146:237–248CrossRef Komaya T, Bell AT (1994) Estimates of rate coefficients for elementary processes occurring during Fischer–Tropsch synthesis over Ru/TiO2. J Catal 146:237–248CrossRef
28.
go back to reference Kuipers EW, Vinkenburg IH, Oosterbeek H (1995) Chain length dependence of α-olefin readsorption in Fischer–Tropsch synthesis. J Catal 152:137–146CrossRef Kuipers EW, Vinkenburg IH, Oosterbeek H (1995) Chain length dependence of α-olefin readsorption in Fischer–Tropsch synthesis. J Catal 152:137–146CrossRef
29.
go back to reference Raje AP, Davis BH (1996) Effect of vapor–liquid equilibrium on Fischer–Tropsch hydrocarbon selectivity for a deactivating catalyst in a slurry reactor. Energy Fuels 10:552–560CrossRef Raje AP, Davis BH (1996) Effect of vapor–liquid equilibrium on Fischer–Tropsch hydrocarbon selectivity for a deactivating catalyst in a slurry reactor. Energy Fuels 10:552–560CrossRef
30.
go back to reference van der Laan GP, Beenackers AACM (1999) Hydrocarbon selectivity model for the gas–solid Fischer–Tropsch synthesis on precipitated iron catalysts. Ind Eng Chem Res 38:1277–1290CrossRef van der Laan GP, Beenackers AACM (1999) Hydrocarbon selectivity model for the gas–solid Fischer–Tropsch synthesis on precipitated iron catalysts. Ind Eng Chem Res 38:1277–1290CrossRef
31.
go back to reference Zhan X, Davis BH (2000) Two alpha Fischer–Tropsch product distribution. A role for vapor–liquid equilibrium? Petrol Sci Techn 18:1037–1053CrossRef Zhan X, Davis BH (2000) Two alpha Fischer–Tropsch product distribution. A role for vapor–liquid equilibrium? Petrol Sci Techn 18:1037–1053CrossRef
32.
go back to reference Masuku CM, Hildebrandt D, Glasser D (2012) Olefin pseudo-equilibrium in the Fischer–Tropsch reaction. Chem Eng J 181–182:667–676CrossRef Masuku CM, Hildebrandt D, Glasser D (2012) Olefin pseudo-equilibrium in the Fischer–Tropsch reaction. Chem Eng J 181–182:667–676CrossRef
33.
go back to reference Masuku CM, Hildebrandt D, Glasser D (2011) The role of vapour–liquid equilibrium in Fischer–Tropsch product distribution. Chem Eng Sci 66:6254–6263CrossRef Masuku CM, Hildebrandt D, Glasser D (2011) The role of vapour–liquid equilibrium in Fischer–Tropsch product distribution. Chem Eng Sci 66:6254–6263CrossRef
34.
go back to reference Zhan X, Davis BH (2002) Assessment of internal diffusion limitation on Fischer–Tropsch product distribution. Appl Catal A Gen 236:149–161CrossRef Zhan X, Davis BH (2002) Assessment of internal diffusion limitation on Fischer–Tropsch product distribution. Appl Catal A Gen 236:149–161CrossRef
35.
go back to reference Lu X, Hildebrandt D, Liu X, Glasser D (2010) Making sense of the Fischer–Tropsch synthesis reaction: start-up. Ind Eng Chem Res 49:9753–9758CrossRef Lu X, Hildebrandt D, Liu X, Glasser D (2010) Making sense of the Fischer–Tropsch synthesis reaction: start-up. Ind Eng Chem Res 49:9753–9758CrossRef
Metadata
Title
Steady-State Attainment Period for Fischer–Tropsch Products
Authors
Cornelius Mduduzi Masuku
Diane Hildebrandt
David Glasser
Burtron H. Davis
Publication date
01-04-2014
Publisher
Springer US
Published in
Topics in Catalysis / Issue 6-9/2014
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0214-z

Other articles of this Issue 6-9/2014

Topics in Catalysis 6-9/2014 Go to the issue

Foreword

Foreword

Premium Partners