Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Stimulus-Responsive Interfacial Chemistry in CNT/Polymer Nanocomposites

Authors : Frank Gardea, Zhongjie Huang, Bryan Glaz, Shashi P. Karna, Xiyuan Cheng, Zhiwei Peng, YuHuang Wang

Published in: Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The enhancement of interfacial interactions in carbon nanotube (CNT)/polydimethylsiloxane (PDMS) polymer matrix composites was investigated. The approach taken was to functionalize the CNTs with the photoreactive molecule benzophenone in order to anchor the CNTs to the polymer chains on demand. The anchoring reaction was activated by the use of externally applied UV irradiation. A comparison was done on randomly dispersed and aligned CNTs in order to observe the effect of orientation on interface mechanics and overall enhancement. The effect of interfacial interaction on the mechanical response was determined through analysis of static mechanical experiments, as an increase in interfacial interaction resulted in an observable change in elastic modulus and yield stress. An increase of 22% in elastic modulus was observed in randomly oriented CNTs while an increase of 93% was observed in aligned CNT composites after exposure to UV light. In addition, alignment of CNTs lead to a more discreet yield stress which allowed for a clearer identification of the onset of interfacial failure. This work provides insight into the intelligent design of composites, starting at the nanoscale, to provide desired on-demand macroscale response.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Coleman, J.N., et al.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44(9), 1624–1652 (2006)CrossRef Coleman, J.N., et al.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44(9), 1624–1652 (2006)CrossRef
2.
go back to reference Gardea, F., Lagoudas, D.C.: Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B. 56, 611–620 (2014)CrossRef Gardea, F., Lagoudas, D.C.: Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B. 56, 611–620 (2014)CrossRef
3.
go back to reference Biercuk, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRef Biercuk, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRef
4.
go back to reference Rittigstein, P., et al.: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6(4), 278–282 (2007)CrossRef Rittigstein, P., et al.: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6(4), 278–282 (2007)CrossRef
5.
go back to reference Schadler, L.: Nanocomposites: Model interfaces. Nat. Mater. 6(4), 257–258 (2007)CrossRef Schadler, L.: Nanocomposites: Model interfaces. Nat. Mater. 6(4), 257–258 (2007)CrossRef
6.
go back to reference Schadler, L., Brinson, L., Sawyer, W.: Polymer nanocomposites: A small part of the story. JOM. 59(3), 53–60 (2007)CrossRef Schadler, L., Brinson, L., Sawyer, W.: Polymer nanocomposites: A small part of the story. JOM. 59(3), 53–60 (2007)CrossRef
7.
go back to reference Schadler, L.S., et al.: Designed interfaces in polymer nanocomposites: A fundamental viewpoint. MRS Bull. 32(04), 335–340 (2007)CrossRef Schadler, L.S., et al.: Designed interfaces in polymer nanocomposites: A fundamental viewpoint. MRS Bull. 32(04), 335–340 (2007)CrossRef
8.
go back to reference Gardea, F., et al.: Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes. ACS Appl. Mater. Interfaces. 7(18), 9725–9735 (2015)CrossRef Gardea, F., et al.: Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes. ACS Appl. Mater. Interfaces. 7(18), 9725–9735 (2015)CrossRef
9.
go back to reference Koratkar, N.A., et al.: Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl. Phys. Lett. 87(6), 063102 (2005)CrossRef Koratkar, N.A., et al.: Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl. Phys. Lett. 87(6), 063102 (2005)CrossRef
10.
go back to reference Suhr, J., Koratkar, N.A.: Energy dissipation in carbon nanotube composites: A review. J. Mater. Sci. 43(13), 4370–4382 (2008)CrossRef Suhr, J., Koratkar, N.A.: Energy dissipation in carbon nanotube composites: A review. J. Mater. Sci. 43(13), 4370–4382 (2008)CrossRef
11.
go back to reference Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. Part B. 41(7), 533–536 (2010)CrossRef Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. Part B. 41(7), 533–536 (2010)CrossRef
12.
go back to reference Hong, W.-T., Tai, N.-H.: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond Relat. Mater. 17(7), 1577–1581 (2008)CrossRef Hong, W.-T., Tai, N.-H.: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond Relat. Mater. 17(7), 1577–1581 (2008)CrossRef
13.
go back to reference Park, J.J., et al.: Functionalization of multi-walled carbon nanotubes by free radical graft polymerization initiated from photoinduced surface groups. Carbon. 48(10), 2899–2905 (2010)CrossRef Park, J.J., et al.: Functionalization of multi-walled carbon nanotubes by free radical graft polymerization initiated from photoinduced surface groups. Carbon. 48(10), 2899–2905 (2010)CrossRef
14.
go back to reference Liu, P.: Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRef Liu, P.: Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRef
15.
go back to reference Qin, S., et al.: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules. 37(3), 752–757 (2004)CrossRef Qin, S., et al.: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules. 37(3), 752–757 (2004)CrossRef
16.
go back to reference Ma, P.-C., et al.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. A: Appl. Sci. Manuf. 41(10), 1345–1367 (2010)CrossRef Ma, P.-C., et al.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. A: Appl. Sci. Manuf. 41(10), 1345–1367 (2010)CrossRef
17.
go back to reference Ramanathan, T., et al.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008)CrossRef Ramanathan, T., et al.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008)CrossRef
18.
go back to reference Sahoo, N.G., et al.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35(7), 837–867 (2010)CrossRef Sahoo, N.G., et al.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35(7), 837–867 (2010)CrossRef
19.
go back to reference Zhao, Y.: Functionalization of single-walled carbon nanotubes (SWNTs) with stimuli-responsive dispersants. Mod Chem Appl. 1(3), 1–2 (2013) Zhao, Y.: Functionalization of single-walled carbon nanotubes (SWNTs) with stimuli-responsive dispersants. Mod Chem Appl. 1(3), 1–2 (2013)
20.
go back to reference Decker, C., et al.: Synthesis of nanocomposite polymers by UV-radiation curing. Polymer. 46(17), 6640–6648 (2005)CrossRef Decker, C., et al.: Synthesis of nanocomposite polymers by UV-radiation curing. Polymer. 46(17), 6640–6648 (2005)CrossRef
21.
go back to reference Prucker, O., et al.: Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. J. Am. Chem. Soc. 121(38), 8766–8770 (1999)CrossRef Prucker, O., et al.: Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. J. Am. Chem. Soc. 121(38), 8766–8770 (1999)CrossRef
22.
go back to reference Huang, J., et al.: Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. J. Am. Chem. Soc. 135(6), 2306–2312 (2013)CrossRef Huang, J., et al.: Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. J. Am. Chem. Soc. 135(6), 2306–2312 (2013)CrossRef
23.
go back to reference Ng, A.L., et al.: Chemical gating of a synthetic tube-in-a-tube semiconductor. J. Am. Chem. Soc. 139(8), 3045–3051 (2017)CrossRef Ng, A.L., et al.: Chemical gating of a synthetic tube-in-a-tube semiconductor. J. Am. Chem. Soc. 139(8), 3045–3051 (2017)CrossRef
24.
go back to reference Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)CrossRef Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)CrossRef
25.
go back to reference Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)CrossRef Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)CrossRef
26.
go back to reference Nikolaev, P., et al.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313(1), 91–97 (1999)CrossRef Nikolaev, P., et al.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313(1), 91–97 (1999)CrossRef
27.
go back to reference Kim, M., et al.: Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J. Phys. Chem. C. 120(20), 11268–11276 (2016)CrossRef Kim, M., et al.: Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J. Phys. Chem. C. 120(20), 11268–11276 (2016)CrossRef
28.
go back to reference Piao, Y.M., et al.: Brightening of carbon nanotube photoluminescence through the incorporation of sp(3) defects. Nat. Chem. 5(10), 840–845 (2013)CrossRef Piao, Y.M., et al.: Brightening of carbon nanotube photoluminescence through the incorporation of sp(3) defects. Nat. Chem. 5(10), 840–845 (2013)CrossRef
29.
go back to reference Srinivasan, R.: Ablation of polymers and biological tissue by ultraviolet lasers. Science. 234(4776), 559–565 (1986)CrossRef Srinivasan, R.: Ablation of polymers and biological tissue by ultraviolet lasers. Science. 234(4776), 559–565 (1986)CrossRef
30.
go back to reference Dorman, G., et al.: The life of Pi star: Exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 116(24), 15284–15398 (2016)CrossRef Dorman, G., et al.: The life of Pi star: Exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 116(24), 15284–15398 (2016)CrossRef
31.
go back to reference Dorman, G., Prestwich, G.D.: Benzophenone photophores in biochemistry. Biochemistry. 33(19), 5661–5673 (1994)CrossRef Dorman, G., Prestwich, G.D.: Benzophenone photophores in biochemistry. Biochemistry. 33(19), 5661–5673 (1994)CrossRef
32.
go back to reference Deng, S., et al.: Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat. Commun. 2, 382 (2011)CrossRef Deng, S., et al.: Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat. Commun. 2, 382 (2011)CrossRef
33.
go back to reference Qian, W.Z., et al.: The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon. 41(13), 2613–2617 (2003)CrossRef Qian, W.Z., et al.: The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon. 41(13), 2613–2617 (2003)CrossRef
34.
go back to reference Schadler, L., Giannaris, S., Ajayan, P.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef Schadler, L., Giannaris, S., Ajayan, P.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)CrossRef
35.
go back to reference Kopp, R., et al.: Multi-fidelity modeling of interfacial micromechanics for off-aligned polymer/carbon nanotube nanocomposites. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017 Kopp, R., et al.: Multi-fidelity modeling of interfacial micromechanics for off-aligned polymer/carbon nanotube nanocomposites. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017
Metadata
Title
Stimulus-Responsive Interfacial Chemistry in CNT/Polymer Nanocomposites
Authors
Frank Gardea
Zhongjie Huang
Bryan Glaz
Shashi P. Karna
Xiyuan Cheng
Zhiwei Peng
YuHuang Wang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95510-0_1

Premium Partners