Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 7/2019

02-01-2019 | Original Article

Stochastic ensemble pruning method via simulated quenching walking

Authors: Zahra Sadat Taghavi, Seyed Taghi Akhavan Niaki, Amir Hossein Niknamfar

Published in: International Journal of Machine Learning and Cybernetics | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inspired by an upward stochastic walking idea, a new ensemble pruning method called simulated quenching walking (SQWALKING) is developed in this paper. The rationale behind this method is to give values to stochastic movements as well as to accept unvalued solutions during the investigation of search spaces. SQWALKING incorporates simulated quenching and forward selection methods to choose the models through the ensemble using probabilistic steps. Two versions of SQWALKING are introduced based on two different evaluation measures; SQWALKINGA that is based on an accuracy measure and SQWALKINGH that is based on a human-like foresight measure. The main objective is to construct a proper architecture of ensemble pruning, which is independent of ensemble construction and combination phases. Extensive comparisons between the proposed method and competitors in terms of heterogeneous and homogeneous ensembles are performed using ten datasets. The comparisons on the heterogeneous ensemble show that SQWALKINGH and SQWALKINGA can lead respectively to 5.13% and 4.22% average accuracy improvement. One reason for these promising results is the pruning phase that takes additional time to find the best models compared to rivals. Finally, the proposed SQWALKINGs are also evaluated on a real-world dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
2.
go back to reference Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley Longman Publishing Co., Inc., Boston Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley Longman Publishing Co., Inc., Boston
3.
go back to reference Dietterich TG (2000) Ensemble methods in machine learning. Springer, BerlinCrossRef Dietterich TG (2000) Ensemble methods in machine learning. Springer, BerlinCrossRef
4.
go back to reference Prodromidis A, Chan P (2000) Meta-learning in distributed data mining systems: issues and approaches. In: Advances of distributed data mining. AAAI Press, Palo Alto Prodromidis A, Chan P (2000) Meta-learning in distributed data mining systems: issues and approaches. In: Advances of distributed data mining. AAAI Press, Palo Alto
5.
go back to reference Caruana R et al (2004) Ensemble selection from libraries of models. In: Proceedings of the 21st international conference on machine learning, ACM: Banff, Canada. p 137–144 Caruana R et al (2004) Ensemble selection from libraries of models. In: Proceedings of the 21st international conference on machine learning, ACM: Banff, Canada. p 137–144
6.
go back to reference Margineantu D, Dietterich T (1997) Pruning adaptive boosting. In: Proceedings of the 14th international conference on machine learning. Morgan Kaufmann Publishers Inc. p 211–218 Margineantu D, Dietterich T (1997) Pruning adaptive boosting. In: Proceedings of the 14th international conference on machine learning. Morgan Kaufmann Publishers Inc. p 211–218
7.
go back to reference Zhou ZH, Wu J, Tang W (2002) Ensemble neural networks: many could be better than all. Artif Intell 137(1–2):239–263MATHCrossRef Zhou ZH, Wu J, Tang W (2002) Ensemble neural networks: many could be better than all. Artif Intell 137(1–2):239–263MATHCrossRef
8.
go back to reference Ekbal A, Saha S (2011) A multiobjective simulated annealing approach for classifier ensemble: named entity recognition in Indian languages as case studies. Expert Syst Appl 38(12):14760–14772CrossRef Ekbal A, Saha S (2011) A multiobjective simulated annealing approach for classifier ensemble: named entity recognition in Indian languages as case studies. Expert Syst Appl 38(12):14760–14772CrossRef
9.
go back to reference Ekbal A, Saha S (2011) Weighted vote-based classifier ensemble for named entity recognition: a genetic algorithm-based approach. ACM Trans Asian Lang Inf Process 10(2):1–37CrossRef Ekbal A, Saha S (2011) Weighted vote-based classifier ensemble for named entity recognition: a genetic algorithm-based approach. ACM Trans Asian Lang Inf Process 10(2):1–37CrossRef
10.
go back to reference Ekbal A, Saha S (2013) Simulated annealing based classifier ensemble techniques: application to part of speech tagging. Inf Fusion 14(3):288–300CrossRef Ekbal A, Saha S (2013) Simulated annealing based classifier ensemble techniques: application to part of speech tagging. Inf Fusion 14(3):288–300CrossRef
11.
go back to reference Saha S, Ekbal A (2013) Combining multiple classifiers using vote based classifier ensemble technique for named entity recognition. Data Knowl Eng 85:15–39CrossRef Saha S, Ekbal A (2013) Combining multiple classifiers using vote based classifier ensemble technique for named entity recognition. Data Knowl Eng 85:15–39CrossRef
12.
go back to reference Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken, p 518MATH Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken, p 518MATH
13.
go back to reference Banfield RE et al (2005) Ensemble diversity measures and their application to thinning. Inf Fusion 6(1):49–62CrossRef Banfield RE et al (2005) Ensemble diversity measures and their application to thinning. Inf Fusion 6(1):49–62CrossRef
14.
go back to reference Partalas I, Tsoumakas G, Vlahavas I (2010) An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach Learn 81(3):257–282MathSciNetCrossRef Partalas I, Tsoumakas G, Vlahavas I (2010) An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach Learn 81(3):257–282MathSciNetCrossRef
15.
go back to reference Taghavi ZS, Sajedi H (2013) Human-inspired ensemble pruning using hill climbing algorithm. In: The 5th Robocup Iranopen International Symposium and the 3rd Joint Conference of Robotices and AI. IEEE: Qazvin-Iran. p 1–7 Taghavi ZS, Sajedi H (2013) Human-inspired ensemble pruning using hill climbing algorithm. In: The 5th Robocup Iranopen International Symposium and the 3rd Joint Conference of Robotices and AI. IEEE: Qazvin-Iran. p 1–7
16.
go back to reference Taghavi ZS, Sajedi H (2014) Ensemble selection using simulated annealing walking. In: The proceedings of the international conference on advances in computing, electronics and electrical technology. Institute of research engineers and doctors: Kuala Lumpur, Malaysia Taghavi ZS, Sajedi H (2014) Ensemble selection using simulated annealing walking. In: The proceedings of the international conference on advances in computing, electronics and electrical technology. Institute of research engineers and doctors: Kuala Lumpur, Malaysia
17.
go back to reference Taghavi ZS, Sajedi H (2015) Ensemble pruning based on oblivious Chained Tabu searches. Int J Hybrid Intell Syst 12(3):131–143CrossRef Taghavi ZS, Sajedi H (2015) Ensemble pruning based on oblivious Chained Tabu searches. Int J Hybrid Intell Syst 12(3):131–143CrossRef
19.
go back to reference Tamon C, Xiang J (2000) On the boosting pruning problem. In: The 11th European conference on machine learning, ECML. Springer, Berlin, p 404–412 Tamon C, Xiang J (2000) On the boosting pruning problem. In: The 11th European conference on machine learning, ECML. Springer, Berlin, p 404–412
22.
go back to reference Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140MATH Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140MATH
23.
go back to reference Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227 Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227
24.
go back to reference Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139MathSciNetMATHCrossRef Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139MathSciNetMATHCrossRef
25.
go back to reference Parmanto B, Munro P, Doyle H (1996) Improving committee diagnosis with resampling techniques. Adv Neural Inf Process Syst 8:882–888 Parmanto B, Munro P, Doyle H (1996) Improving committee diagnosis with resampling techniques. Adv Neural Inf Process Syst 8:882–888
27.
go back to reference Zhou ZH (2012) Ensemble methods: foundations and algorithms. CRC Press, Boca RatonCrossRef Zhou ZH (2012) Ensemble methods: foundations and algorithms. CRC Press, Boca RatonCrossRef
28.
go back to reference Xia X, Lin T, Chen Z (2018) Maximum relevancy maximum complementary based ordered aggregation for ensemble pruning. Appl Intell 48:2568–2579CrossRef Xia X, Lin T, Chen Z (2018) Maximum relevancy maximum complementary based ordered aggregation for ensemble pruning. Appl Intell 48:2568–2579CrossRef
29.
go back to reference Guo H et al (2018) Margin and diversity based ordering ensemble pruning. Neurocomputing 275:237–246CrossRef Guo H et al (2018) Margin and diversity based ordering ensemble pruning. Neurocomputing 275:237–246CrossRef
31.
go back to reference Onan A, Korukoğlu S, Bulut H (2017) A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification. Inf Process Manag 53(4):814–833CrossRef Onan A, Korukoğlu S, Bulut H (2017) A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification. Inf Process Manag 53(4):814–833CrossRef
32.
go back to reference Lin C et al (2014) LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123:424–435CrossRef Lin C et al (2014) LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123:424–435CrossRef
33.
go back to reference Zhang H, Cao L (2014) A spectral clustering based ensemble pruning approach. Neurocomputing 139:289–297CrossRef Zhang H, Cao L (2014) A spectral clustering based ensemble pruning approach. Neurocomputing 139:289–297CrossRef
34.
go back to reference Sheen S, Anitha R, Sirish P (2013) Malware detection by pruning of parallel ensembles using harmony search. Pattern Recognit Lett Innov Knowl-based Tech 34(14):1679–1686CrossRef Sheen S, Anitha R, Sirish P (2013) Malware detection by pruning of parallel ensembles using harmony search. Pattern Recognit Lett Innov Knowl-based Tech 34(14):1679–1686CrossRef
35.
go back to reference Narassiguin A, Elghazel H, Aussem A (2017) Dynamic ensemble selection with probabilistic classifier chains. In: Machine learning and knowledge discovery in databases, p 169–186 Narassiguin A, Elghazel H, Aussem A (2017) Dynamic ensemble selection with probabilistic classifier chains. In: Machine learning and knowledge discovery in databases, p 169–186
36.
go back to reference Mozaffari A et al (2017) A hierarchical selective ensemble randomized neural network hybridized with heuristic feature selection for estimation of sea-ice thickness. Appl Intell 46(1):16–33CrossRef Mozaffari A et al (2017) A hierarchical selective ensemble randomized neural network hybridized with heuristic feature selection for estimation of sea-ice thickness. Appl Intell 46(1):16–33CrossRef
37.
go back to reference Ye R, Dai Q (2018) A novel greedy randomized dynamic ensemble selection algorithm. Neural Process Lett 47(2):565–599 Ye R, Dai Q (2018) A novel greedy randomized dynamic ensemble selection algorithm. Neural Process Lett 47(2):565–599
38.
go back to reference Bandyopadhyay S et al (2008) A simulated annealing based multi-objective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3):269–283CrossRef Bandyopadhyay S et al (2008) A simulated annealing based multi-objective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3):269–283CrossRef
39.
go back to reference Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston, p 372 Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston, p 372
40.
go back to reference Deb K et al. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2): 181–197 Deb K et al. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2): 181–197
41.
go back to reference Wang X et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRef Wang X et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRef
42.
go back to reference Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th International conference on international conference on machine learning. Morgan Kaufmann Publishers Inc., Bari, Italy. p 148–156 Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th International conference on international conference on machine learning. Morgan Kaufmann Publishers Inc., Bari, Italy. p 148–156
43.
go back to reference Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
44.
go back to reference Wei L et al (2014) Improved and promising identification of human micrornas by incorporating a high-quality negative set. IEEE/ACM Trans Comput Biol Bioinform 11(1):192–201CrossRef Wei L et al (2014) Improved and promising identification of human micrornas by incorporating a high-quality negative set. IEEE/ACM Trans Comput Biol Bioinform 11(1):192–201CrossRef
Metadata
Title
Stochastic ensemble pruning method via simulated quenching walking
Authors
Zahra Sadat Taghavi
Seyed Taghi Akhavan Niaki
Amir Hossein Niknamfar
Publication date
02-01-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 7/2019
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-018-00912-3

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue