Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-01-2019 | Original Article | Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

Stochastic ensemble pruning method via simulated quenching walking

Journal:
International Journal of Machine Learning and Cybernetics > Issue 7/2019
Authors:
Zahra Sadat Taghavi, Seyed Taghi Akhavan Niaki, Amir Hossein Niknamfar
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Inspired by an upward stochastic walking idea, a new ensemble pruning method called simulated quenching walking (SQWALKING) is developed in this paper. The rationale behind this method is to give values to stochastic movements as well as to accept unvalued solutions during the investigation of search spaces. SQWALKING incorporates simulated quenching and forward selection methods to choose the models through the ensemble using probabilistic steps. Two versions of SQWALKING are introduced based on two different evaluation measures; SQWALKINGA that is based on an accuracy measure and SQWALKINGH that is based on a human-like foresight measure. The main objective is to construct a proper architecture of ensemble pruning, which is independent of ensemble construction and combination phases. Extensive comparisons between the proposed method and competitors in terms of heterogeneous and homogeneous ensembles are performed using ten datasets. The comparisons on the heterogeneous ensemble show that SQWALKINGH and SQWALKINGA can lead respectively to 5.13% and 4.22% average accuracy improvement. One reason for these promising results is the pruning phase that takes additional time to find the best models compared to rivals. Finally, the proposed SQWALKINGs are also evaluated on a real-world dataset.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue