Skip to main content
Top
Published in:

2019 | OriginalPaper | Chapter

Stochastic Mean-Field Dynamics and Applications to Life Sciences

Author : Paolo Dai Pra

Published in: Stochastic Dynamics Out of Equilibrium

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although we do not intend to give a general, formal definition, the stochastic mean-field dynamics we present in these notes can be conceived as the random evolution of a system comprised by N interacting components which is: (a) invariant in law for permutation of the components; (b) such that the contribution of each component to the evolution of any other is of order \(\frac{1}{N}\). The permutation invariance clearly does not allow any freedom in the choice of the geometry of the interaction; however, this is exactly the feature that makes these models analytically treatable, and therefore attractive for a wide scientific community.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Andreis, L., Dai Pra, P., Fischer, M.: McKean–Vlasov limit for interacting systems with simultaneous jumps. Stochast. Anal. Appl. 36(6), 960–995 (2018)MathSciNetMATHCrossRef Andreis, L., Dai Pra, P., Fischer, M.: McKean–Vlasov limit for interacting systems with simultaneous jumps. Stochast. Anal. Appl. 36(6), 960–995 (2018)MathSciNetMATHCrossRef
2.
go back to reference Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.D.: Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(1), 10 (2012)MathSciNetMATHCrossRef Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.D.: Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(1), 10 (2012)MathSciNetMATHCrossRef
3.
go back to reference Ben Arous, G., Guionnet, A.: Large deviations for Langevin spin glass dynamics. Probab. Theory Relat. Fields 102(4), 455–509 (1995)MathSciNetMATHCrossRef Ben Arous, G., Guionnet, A.: Large deviations for Langevin spin glass dynamics. Probab. Theory Relat. Fields 102(4), 455–509 (1995)MathSciNetMATHCrossRef
4.
go back to reference Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Statist. Phys. 138, 270–290 (2010)MathSciNetMATHCrossRef Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Statist. Phys. 138, 270–290 (2010)MathSciNetMATHCrossRef
5.
go back to reference Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2013)MATH Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2013)MATH
6.
go back to reference Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208, 429–445 (2013)MathSciNetMATHCrossRef Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208, 429–445 (2013)MathSciNetMATHCrossRef
7.
go back to reference Bonilla, L.L., Neu, J.C., Spigler, R.: Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Statist. Phys. 67(1–2), 313–330 (1992)MathSciNetMATHCrossRef Bonilla, L.L., Neu, J.C., Spigler, R.: Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Statist. Phys. 67(1–2), 313–330 (1992)MathSciNetMATHCrossRef
8.
go back to reference Bonilla, L.L., Pérez Vicente, C.J., Spigler, R.: Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions. Phys. D 113(1), 79–97 (1998)MathSciNetMATHCrossRef Bonilla, L.L., Pérez Vicente, C.J., Spigler, R.: Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions. Phys. D 113(1), 79–97 (1998)MathSciNetMATHCrossRef
9.
go back to reference Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40(1), 1–435 (2012)MathSciNetMATHCrossRef Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40(1), 1–435 (2012)MathSciNetMATHCrossRef
10.
go back to reference Cardaliaguet, P., Delarue, F., Lasry, J.M., Lions, P.-L.: The master equation and the convergence problem in mean field games. arXiv preprint arXiv:1509.02505 (2015) Cardaliaguet, P., Delarue, F., Lasry, J.M., Lions, P.-L.: The master equation and the convergence problem in mean field games. arXiv preprint arXiv:​1509.​02505 (2015)
11.
go back to reference Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140(1–2), 19–40 (2008)MathSciNetMATH Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140(1–2), 19–40 (2008)MathSciNetMATH
15.
go back to reference Chevallier, J., Caceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25(14), 2669–2719 (2015)MathSciNetMATHCrossRef Chevallier, J., Caceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25(14), 2669–2719 (2015)MathSciNetMATHCrossRef
16.
go back to reference Chevallier, J., Duarte, A., Löcherbach, E., Ost, G.: Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochast. Process. Appl. 129(1), 1–27 (2019)MathSciNetMATHCrossRef Chevallier, J., Duarte, A., Löcherbach, E., Ost, G.: Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochast. Process. Appl. 129(1), 1–27 (2019)MathSciNetMATHCrossRef
17.
go back to reference Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 26, 1–40 (2012)MathSciNetMATH Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 26, 1–40 (2012)MathSciNetMATH
18.
go back to reference Collet, F., Dai Pra, P., Formentin, M.: Collective periodicity in mean-field models of cooperative behavior. NoDEA Nonlinear Differ. Equ. Appl. 22(5), 1461–1482 (2015)MathSciNetMATHCrossRef Collet, F., Dai Pra, P., Formentin, M.: Collective periodicity in mean-field models of cooperative behavior. NoDEA Nonlinear Differ. Equ. Appl. 22(5), 1461–1482 (2015)MathSciNetMATHCrossRef
19.
go back to reference Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Comm. Math. Phys. 118, 531–567 (1988)MathSciNetMATHCrossRef Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Comm. Math. Phys. 118, 531–567 (1988)MathSciNetMATHCrossRef
20.
go back to reference Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Statist. Phys. 84(3–4), 735–772 (1996)MathSciNetMATHCrossRef Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Statist. Phys. 84(3–4), 735–772 (1996)MathSciNetMATHCrossRef
21.
go back to reference Dai Pra, P., Tovazzi, D.: The dynamics of critical fluctuations in asymmetric Curie–Weiss models. Stochast. Process. Appl. 129(3), 1060–1095 (2019)MathSciNetMATHCrossRef Dai Pra, P., Tovazzi, D.: The dynamics of critical fluctuations in asymmetric Curie–Weiss models. Stochast. Process. Appl. 129(3), 1060–1095 (2019)MathSciNetMATHCrossRef
22.
go back to reference Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31(1), 29–85 (1983)MathSciNetCrossRef Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31(1), 29–85 (1983)MathSciNetCrossRef
23.
go back to reference Dawson, D.A., Gartner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)MathSciNetMATHCrossRef Dawson, D.A., Gartner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)MathSciNetMATHCrossRef
24.
25.
go back to reference Ditlevsen, S., Löcherbach, E.: Multi-class oscillating systems of interacting neurons. Stochast. Process. Appl. 127(6), 1840–1869 (2017)MathSciNetMATHCrossRef Ditlevsen, S., Löcherbach, E.: Multi-class oscillating systems of interacting neurons. Stochast. Process. Appl. 127(6), 1840–1869 (2017)MathSciNetMATHCrossRef
26.
go back to reference Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stochast. Process. Appl. 71(1), 33–53 (1997)MathSciNetMATHCrossRef Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stochast. Process. Appl. 71(1), 33–53 (1997)MathSciNetMATHCrossRef
27.
go back to reference Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)MathSciNetMATHCrossRef Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)MathSciNetMATHCrossRef
28.
go back to reference Giacomin, G., Luçon, E., Poquet, C.: Coherence stability and effect of random natural frequencies in populations of coupled oscillators. J. Dyn. Diff. Equat. 26(2), 333–367 (2014)MathSciNetMATHCrossRef Giacomin, G., Luçon, E., Poquet, C.: Coherence stability and effect of random natural frequencies in populations of coupled oscillators. J. Dyn. Diff. Equat. 26(2), 333–367 (2014)MathSciNetMATHCrossRef
29.
go back to reference Giacomin, G., Poquet, C., Shapira, A.: Small noise and long time phase diffusion in stochastic limit cycle oscillators. J. Diff. Equat. 264(2), 1019–1049 (2018)MathSciNetMATHCrossRef Giacomin, G., Poquet, C., Shapira, A.: Small noise and long time phase diffusion in stochastic limit cycle oscillators. J. Diff. Equat. 264(2), 1019–1049 (2018)MathSciNetMATHCrossRef
30.
go back to reference Graham, C.: Nonlinear diffusion with jumps. Annales de l’I.H.P. Probabilités et statistiques 28(3), 393–402 (1992)MathSciNetMATH Graham, C.: Nonlinear diffusion with jumps. Annales de l’I.H.P. Probabilités et statistiques 28(3), 393–402 (1992)MathSciNetMATH
31.
go back to reference Jourdain, B., Méléard, S.: Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist. 34(6), 727–766 (1998)MathSciNetMATHCrossRef Jourdain, B., Méléard, S.: Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist. 34(6), 727–766 (1998)MathSciNetMATHCrossRef
32.
33.
go back to reference Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Courier Dover Publications, New York (2003)MATH Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Courier Dover Publications, New York (2003)MATH
34.
go back to reference Lasry, J.M., Lions, P.-L.: Jeux à champ moyen I. le cas stationnaire. C.R. Acad. Sci. Paris 343(9), 619–625 (2006) Lasry, J.M., Lions, P.-L.: Jeux à champ moyen I. le cas stationnaire. C.R. Acad. Sci. Paris 343(9), 619–625 (2006)
35.
go back to reference Lindner, B., Garca Ojalvo, A., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004) Lindner, B., Garca Ojalvo, A., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)
36.
go back to reference Luçon, E.: Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16, 792–829 (2011)MathSciNetMATHCrossRef Luçon, E.: Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16, 792–829 (2011)MathSciNetMATHCrossRef
37.
go back to reference Luçon, E.: Oscillateurs couplés, désordre et synchronisation. Diss. Université Pierre et Marie Curie-Paris VI (2012) Luçon, E.: Oscillateurs couplés, désordre et synchronisation. Diss. Université Pierre et Marie Curie-Paris VI (2012)
38.
39.
go back to reference Luçon, E., Poquet, C.: Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction, a slow-fast dynamics approach. arXiv preprint arXiv:1802.06410 (2018) Luçon, E., Poquet, C.: Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction, a slow-fast dynamics approach. arXiv preprint arXiv:​1802.​06410 (2018)
40.
41.
go back to reference Mischler, S., Quiñinao, C., Touboul, J.: On a kinetic Fitzhugh-Nagumo model of neuronal network. Commun. Math. Phys. 342(3), 1001–1042 (2016)MathSciNetMATHCrossRef Mischler, S., Quiñinao, C., Touboul, J.: On a kinetic Fitzhugh-Nagumo model of neuronal network. Commun. Math. Phys. 342(3), 1001–1042 (2016)MathSciNetMATHCrossRef
42.
go back to reference Protter, P.: Stochastic differential equations. In: Stochastic Integration and Differential Equations, pp. 187–284. Springer, Heidelberg (2005)MATHCrossRef Protter, P.: Stochastic differential equations. In: Stochastic Integration and Differential Equations, pp. 187–284. Springer, Heidelberg (2005)MATHCrossRef
43.
go back to reference Quiñinao, C., Touboul, J.: Limits and dynamics of randomly connected neuronal networks. Acta Applicandae Mathematicae 136(1), 167–192 (2015)MathSciNetMATHCrossRef Quiñinao, C., Touboul, J.: Limits and dynamics of randomly connected neuronal networks. Acta Applicandae Mathematicae 136(1), 167–192 (2015)MathSciNetMATHCrossRef
44.
45.
46.
go back to reference Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’Eté de Probabilités de Saint-Flour XIX–1989, pp. 165–251. Springer (1991) Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’Eté de Probabilités de Saint-Flour XIX–1989, pp. 165–251. Springer (1991)
47.
go back to reference Veretennikov, A.Y.: On ergodic measures for McKean-Vlasov stochastic equations. In: Monte Carlo and Quasi-Monte Carlo Methods, pp. 471–486 (2006) Veretennikov, A.Y.: On ergodic measures for McKean-Vlasov stochastic equations. In: Monte Carlo and Quasi-Monte Carlo Methods, pp. 471–486 (2006)
48.
go back to reference Touboul, J.D.: Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149(4), 569–597 (2012)MathSciNetMATHCrossRef Touboul, J.D.: Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149(4), 569–597 (2012)MathSciNetMATHCrossRef
Metadata
Title
Stochastic Mean-Field Dynamics and Applications to Life Sciences
Author
Paolo Dai Pra
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15096-9_1

Premium Partner