Skip to main content
Top

2021 | OriginalPaper | Chapter

Stochastic Modeling of Passive Scalars in Turbulent Channel Flows: Predictive Capabilities of One-Dimensional Turbulence

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerical simulations of passive scalars in turbulent channel flows up to friction Reynolds number \(Re_\tau =5{,}200\) and Schmidt number \(Sc=2{,}000\) are performed by utilizing the stochastic one-dimensional turbulence (ODT) model as stand-alone tool. The model is calibrated once for the turbulent velocity boundary layer at \(Re_\tau =5{,}200\) so that the passive scalar is a model prediction. ODT is able to reproduce with reasonable accuracy the scaling regimes of the scalar transfer and locally resolve the boundary layer structure. Albeit the model is unable to capture the emerging dissimilarity of near-wall scalar and momentum transport for high Sc, it can economically and accurately represent fluctuating wall-normal fluxes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abe, H., Kawamura, H.: Surface heat-flux fluctuations in a turbulent channel flow up to \(\mathit{Re}_\tau =1020\) with \(\mathit{Pr} = 0.025\) and \(0.71\). Int. J. Heat Fluid Flow 25(3), 404–419 (2004)CrossRef Abe, H., Kawamura, H.: Surface heat-flux fluctuations in a turbulent channel flow up to \(\mathit{Re}_\tau =1020\) with \(\mathit{Pr} = 0.025\) and \(0.71\). Int. J. Heat Fluid Flow 25(3), 404–419 (2004)CrossRef
2.
go back to reference Deardorff, J.W.: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci. 23(9), 503–506 (1966)CrossRef Deardorff, J.W.: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci. 23(9), 503–506 (1966)CrossRef
3.
go back to reference Hasegawa, Y., Kasagi, N.: Low-pass filtering effects of viscous sublayer on high Schmidt number mass transfer close to a solid wall. Int. J. Heat Fluid Flow 30(3), 525–533 (2009)CrossRef Hasegawa, Y., Kasagi, N.: Low-pass filtering effects of viscous sublayer on high Schmidt number mass transfer close to a solid wall. Int. J. Heat Fluid Flow 30(3), 525–533 (2009)CrossRef
4.
go back to reference Kawamura, H., Abe, H., Matsuo, Y.: DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Int. J. Heat Fluid Flow 20(3), 196–207 (1999)CrossRef Kawamura, H., Abe, H., Matsuo, Y.: DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Int. J. Heat Fluid Flow 20(3), 196–207 (1999)CrossRef
5.
go back to reference Kerstein, A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)MathSciNetCrossRef Kerstein, A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)MathSciNetCrossRef
6.
go back to reference Kerstein, A.R., Ashurst, W.T., Wunsch, S., Nilsen, V.: One-dimensional turbulence: vector formulation and application to free shear flows. J. Fluid Mech. 447, 85–109 (2001)CrossRef Kerstein, A.R., Ashurst, W.T., Wunsch, S., Nilsen, V.: One-dimensional turbulence: vector formulation and application to free shear flows. J. Fluid Mech. 447, 85–109 (2001)CrossRef
7.
go back to reference Klein, M., Schmidt, H.: Investigating the Reynolds number dependency of the scalar transfer to a wall using a stochastic turbulence model. Proc. Appl. Math. Mech. 18(1), e201800238 (2018)CrossRef Klein, M., Schmidt, H.: Investigating the Reynolds number dependency of the scalar transfer to a wall using a stochastic turbulence model. Proc. Appl. Math. Mech. 18(1), e201800238 (2018)CrossRef
8.
go back to reference Klein, M., Zenker, C., Schmidt, H.: Small-scale resolving simulations of the turbulent mixing in confined planar jets using one-dimensional turbulence. Chem. Eng. Sci. 204, 186–202 (2019)CrossRef Klein, M., Zenker, C., Schmidt, H.: Small-scale resolving simulations of the turbulent mixing in confined planar jets using one-dimensional turbulence. Chem. Eng. Sci. 204, 186–202 (2019)CrossRef
9.
go back to reference Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to \(\mathit{Re}_\tau \approx 5200\). J. Fluid Mech. 774, 395–415 (2015)CrossRef Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to \(\mathit{Re}_\tau \approx 5200\). J. Fluid Mech. 774, 395–415 (2015)CrossRef
10.
go back to reference Lignell, D.O., Kerstein, A.R., Sun, G., Monson, E.I.: Mesh adaption for efficient multiscale implementation of one-dimensional turbulence. Theor. Comput. Fluid Dyn. 27(3), 273–295 (2013)CrossRef Lignell, D.O., Kerstein, A.R., Sun, G., Monson, E.I.: Mesh adaption for efficient multiscale implementation of one-dimensional turbulence. Theor. Comput. Fluid Dyn. 27(3), 273–295 (2013)CrossRef
11.
go back to reference Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., Sreenivasan, K.R.: Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 22, 065103 (2010)CrossRef Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., Sreenivasan, K.R.: Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 22, 065103 (2010)CrossRef
12.
go back to reference Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(\mathit{Re}_\tau \approx 590\). Phys. Fluids 11(4), 943–945 (1999)CrossRef Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(\mathit{Re}_\tau \approx 590\). Phys. Fluids 11(4), 943–945 (1999)CrossRef
13.
go back to reference Pirozzoli, S., Bernardini, M., Orlandi, P.: Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788(2), 614–639 (2016)MathSciNetCrossRef Pirozzoli, S., Bernardini, M., Orlandi, P.: Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788(2), 614–639 (2016)MathSciNetCrossRef
14.
go back to reference Rakhi, Klein, M., Medina M., J.A., Schmidt, H.: One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS. J. Turbul. 20(8), 506–543 (2019) Rakhi, Klein, M., Medina M., J.A., Schmidt, H.: One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS. J. Turbul. 20(8), 506–543 (2019)
15.
go back to reference Schmidt, R.C., Kerstein, A.R., Wunsch, S., Nilsen, V.: Near-wall LES closure based on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317–355 (2003)MathSciNetCrossRef Schmidt, R.C., Kerstein, A.R., Wunsch, S., Nilsen, V.: Near-wall LES closure based on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317–355 (2003)MathSciNetCrossRef
16.
go back to reference Schwertfirm, F., Manhart, M.: DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers. Int. J. Heat Fluid Flow 28(6), 1204–1214 (2007)CrossRef Schwertfirm, F., Manhart, M.: DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers. Int. J. Heat Fluid Flow 28(6), 1204–1214 (2007)CrossRef
17.
go back to reference Shaw, D.A., Hanratty, T.J.: Turbulent mass transfer rates to a wall for large Schmidt numbers. AIChE J. 23(1), 28–37 (1977)CrossRef Shaw, D.A., Hanratty, T.J.: Turbulent mass transfer rates to a wall for large Schmidt numbers. AIChE J. 23(1), 28–37 (1977)CrossRef
18.
go back to reference Son, J.S., Hanratty, T.J.: Limiting relation for the eddy diffusivity close to a wall. AIChE J. 13(4), 689–696 (1967)CrossRef Son, J.S., Hanratty, T.J.: Limiting relation for the eddy diffusivity close to a wall. AIChE J. 13(4), 689–696 (1967)CrossRef
Metadata
Title
Stochastic Modeling of Passive Scalars in Turbulent Channel Flows: Predictive Capabilities of One-Dimensional Turbulence
Authors
Marten Klein
Heiko Schmidt
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-79561-0_5

Premium Partners