Skip to main content
Top

2025 | OriginalPaper | Chapter

3. Stochastic Models of Diagnostic Signals Arising During the Operation of Electrical Equipment

Authors : Vitalii Babak, Sergii Babak, Artur Zaporozhets

Published in: Statistical Diagnostics of Electric Power Equipment

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a comprehensive mathematical framework for the analysis and diagnostic application of vibration and acoustic emission (AE) signals in electrical equipment (EE). Through the development of linear random processes and multi-resonant models, it offers a detailed representation of vibration and AE signals generated by rolling bearings and laminated magnetic circuits within electrical machines. The models are designed to decipher the complex condition of equipment components by analyzing vibrations caused by mechanical interactions and AE resulting from operational stresses. Key contributions include the establishment of a vibration model that simulates the multi-resonant system's response to generating impulses, reflecting the dynamics of rolling bearings, and a model for AE that integrates continuous and discrete signal components. This dual approach allows for a nuanced analysis of EE conditions, particularly focusing on bearing vibrations and laminated magnetic circuit responses to operational defects. The proposed models are centered on the understanding that diagnostic signals can be dissected into probabilistic characteristics, offering novel diagnostic signs through the statistical estimation of signal parameters. These models are crucial for identifying defects and monitoring the condition of EE, with significant implications for enhancing reliability and extending the lifespan of such equipment. The findings propose a methodological advancement in the diagnostic domain, providing a solid foundation for future research into the application of these models in real-world diagnostics and preventive maintenance strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rajan, D.: Probability, random variables, and stochastic processes. In: Mathematical Foundations for Signal Processing, Communications, and Networking, pp. 205–244. CRC Press (2017) Rajan, D.: Probability, random variables, and stochastic processes. In: Mathematical Foundations for Signal Processing, Communications, and Networking, pp. 205–244. CRC Press (2017)
2.
go back to reference Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford University Press (2020) Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford University Press (2020)
3.
go back to reference Florescu, I.: Probability and stochastic processes. John Wiley & Sons (2014) Florescu, I.: Probability and stochastic processes. John Wiley & Sons (2014)
4.
go back to reference Micheas, A.C.: Theory of stochastic objects: probability, stochastic processes and inference. Chapman and Hall/CRC (2018) Micheas, A.C.: Theory of stochastic objects: probability, stochastic processes and inference. Chapman and Hall/CRC (2018)
5.
go back to reference Miller, S., Childers, D.: Probability and Random Processes: With Applications to Signal Processing and Communications. Academic Press (2012) Miller, S., Childers, D.: Probability and Random Processes: With Applications to Signal Processing and Communications. Academic Press (2012)
6.
go back to reference Puchalski, A.A., Komorska, I.: Generative modelling of vibration signals in machine maintenance. Eksploatacja i Niezawodność 25(4) (2023) Puchalski, A.A., Komorska, I.: Generative modelling of vibration signals in machine maintenance. Eksploatacja i Niezawodność 25(4) (2023)
7.
go back to reference Tama, B.A., Vania, M., Lee, S., Lim, S.: Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artif. Intell. Rev. 56(5), 4667–4709 (2023)CrossRef Tama, B.A., Vania, M., Lee, S., Lim, S.: Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artif. Intell. Rev. 56(5), 4667–4709 (2023)CrossRef
8.
go back to reference Ren, H., Dai, Z., Zhou, B., Zhang, B., Yin, A., Pei, L., Cao, Q.: Vibration monitoring and semisupervised multivariate invertible deep probabilistic learning for gearbox faults identification. IEEE Sens. J. 22(22), 22020–22029 (2022)CrossRef Ren, H., Dai, Z., Zhou, B., Zhang, B., Yin, A., Pei, L., Cao, Q.: Vibration monitoring and semisupervised multivariate invertible deep probabilistic learning for gearbox faults identification. IEEE Sens. J. 22(22), 22020–22029 (2022)CrossRef
9.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022) Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022)
10.
go back to reference Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021) Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021)
11.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M. (2020). Methods and models for information data analysis. Diagnos. Syst. Energy Equipm. 23–70 Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M. (2020). Methods and models for information data analysis. Diagnos. Syst. Energy Equipm. 23–70
12.
go back to reference Fageot, J., Uhlmann, V., Unser, M.: Gaussian and sparse processes are limits of generalized Poisson processes. Appl. Comput. Harmon. Anal. 48(3), 1045–1065 (2020)MathSciNetCrossRef Fageot, J., Uhlmann, V., Unser, M.: Gaussian and sparse processes are limits of generalized Poisson processes. Appl. Comput. Harmon. Anal. 48(3), 1045–1065 (2020)MathSciNetCrossRef
13.
go back to reference Jasiulis-Gołdyn, B.H., Misiewicz, J.K.: Classical definitions of the Poisson process do not coincide in the case of generalized convolutions. Lith. Math. J. 55, 518–542 (2015)MathSciNetCrossRef Jasiulis-Gołdyn, B.H., Misiewicz, J.K.: Classical definitions of the Poisson process do not coincide in the case of generalized convolutions. Lith. Math. J. 55, 518–542 (2015)MathSciNetCrossRef
14.
go back to reference Xiong, Q., Xu, Y., Peng, Y., Zhang, W., Li, Y., Tang, L.: Low-speed rolling bearing fault diagnosis based on EMD denoising and parameter estimate with alpha stable distribution. J. Mech. Sci. Technol. 31, 1587–1601 (2017)CrossRef Xiong, Q., Xu, Y., Peng, Y., Zhang, W., Li, Y., Tang, L.: Low-speed rolling bearing fault diagnosis based on EMD denoising and parameter estimate with alpha stable distribution. J. Mech. Sci. Technol. 31, 1587–1601 (2017)CrossRef
15.
go back to reference Xiong, Q., Zhang, W., Lu, T., Mei, G., Liang, S.: A fault diagnosis method for rolling bearings based on feature fusion of multifractal detrended fluctuation analysis and alpha stable distribution. Shock and Vibration, 2016 (2016) Xiong, Q., Zhang, W., Lu, T., Mei, G., Liang, S.: A fault diagnosis method for rolling bearings based on feature fusion of multifractal detrended fluctuation analysis and alpha stable distribution. Shock and Vibration, 2016 (2016)
16.
go back to reference Eremenko, V., Zaporozhets, A., Isaienko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019) Eremenko, V., Zaporozhets, A., Isaienko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019)
17.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O. (2021). Models and measures for the diagnosis of electric power equipment. Models Measures Measurem. Monit. 99–126 Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O. (2021). Models and measures for the diagnosis of electric power equipment. Models Measures Measurem. Monit. 99–126
18.
go back to reference Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023)
19.
go back to reference Li, Y., Zhang, W., Xiong, Q., Lu, T., Mei, G.: A novel fault diagnosis model for bearing of railway vehicles using vibration signals based on symmetric alpha-stable distribution feature extraction. Shock and Vibration (2016) Li, Y., Zhang, W., Xiong, Q., Lu, T., Mei, G.: A novel fault diagnosis model for bearing of railway vehicles using vibration signals based on symmetric alpha-stable distribution feature extraction. Shock and Vibration (2016)
20.
go back to reference Matsiuk, A.V., Pryimak, M.V.: Mathematical model of electroretinogram in the form of linear stochastic process. In: 2005 IEEE intelligent data acquisition and advanced computing systems: technology and applications, pp. 663–666. IEEE (2005) Matsiuk, A.V., Pryimak, M.V.: Mathematical model of electroretinogram in the form of linear stochastic process. In: 2005 IEEE intelligent data acquisition and advanced computing systems: technology and applications, pp. 663–666. IEEE (2005)
21.
go back to reference Zvaritch, V., Glazkova, E.: Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals. In: 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 259–261. IEEE (2015) Zvaritch, V., Glazkova, E.: Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals. In: 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 259–261. IEEE (2015)
22.
go back to reference Rosiński, J., Szulga, J.: Product random measures and double stochastic integrals. In: Martingale theory in harmonic analysis and banach spaces: proceedings of the NSF-CBMS conference held at the cleveland State University, Cleveland, Ohio, July 13–17, 1981 pp. 181–199. Springer Berlin Heidelberg, Berlin, Heidelberg (2006) Rosiński, J., Szulga, J.: Product random measures and double stochastic integrals. In: Martingale theory in harmonic analysis and banach spaces: proceedings of the NSF-CBMS conference held at the cleveland State University, Cleveland, Ohio, July 13–17, 1981 pp. 181–199. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)
24.
go back to reference Wang, Y., Xia, A., Zhang, P., Qin, G.: Probabilistic physical modeling of randomly corroded surface and its use in reliability analysis of corroded pipelines under spatiotemporal vibration. Ocean Eng. 262, 112219 (2022)CrossRef Wang, Y., Xia, A., Zhang, P., Qin, G.: Probabilistic physical modeling of randomly corroded surface and its use in reliability analysis of corroded pipelines under spatiotemporal vibration. Ocean Eng. 262, 112219 (2022)CrossRef
25.
go back to reference En, X., Zhang, Y., Huang, X., Li, Y., Yang, G.: Time-varying reliability and global sensitivity analysis of regenerative chatter stability in turning considering tool wear. Mech. Based Des. Struct. Mach. 50(12), 4084–4104 (2022)CrossRef En, X., Zhang, Y., Huang, X., Li, Y., Yang, G.: Time-varying reliability and global sensitivity analysis of regenerative chatter stability in turning considering tool wear. Mech. Based Des. Struct. Mach. 50(12), 4084–4104 (2022)CrossRef
26.
go back to reference Cong, F., Zhou, Q., Chen, L., Lin, F., Lin, X., Zhou, Y.: Hob wear state condition monitoring based on statistical distribution law. CIRP J. Manuf. Sci. Technol. 44, 16–26 (2023)CrossRef Cong, F., Zhou, Q., Chen, L., Lin, F., Lin, X., Zhou, Y.: Hob wear state condition monitoring based on statistical distribution law. CIRP J. Manuf. Sci. Technol. 44, 16–26 (2023)CrossRef
27.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L. M., Zaporozhets, A.O.: Models of measuring signals and fields. Models and Measures in Measurements and Monitoring, 33–59 Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L. M., Zaporozhets, A.O.: Models of measuring signals and fields. Models and Measures in Measurements and Monitoring, 33–59
28.
go back to reference Schreiber, T., Schmitz, A.: Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635 (1996)CrossRef Schreiber, T., Schmitz, A.: Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635 (1996)CrossRef
29.
go back to reference Kostenko, P.Y., Vasylyshyn, V.I.: Enhancing the efficiency of spectral analysis of signals by the Root-MUSIC method using surrogate data. Radioelectron. Commun. Syst. 57, 31–38 (2014)CrossRef Kostenko, P.Y., Vasylyshyn, V.I.: Enhancing the efficiency of spectral analysis of signals by the Root-MUSIC method using surrogate data. Radioelectron. Commun. Syst. 57, 31–38 (2014)CrossRef
30.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. Diagnostic Systems For Energy Equipments, 71–90 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. Diagnostic Systems For Energy Equipments, 71–90 (2020)
31.
go back to reference Gemeinder, Y., Schuster, M., Radnai, B., Sauer, B., Binder, A.: Calculation and validation of a bearing impedance model for ball bearings and the influence on EDM-currents. In: 2014 International Conference on electrical machines (ICEM), pp. 1804–1810. IEEE (2014) Gemeinder, Y., Schuster, M., Radnai, B., Sauer, B., Binder, A.: Calculation and validation of a bearing impedance model for ball bearings and the influence on EDM-currents. In: 2014 International Conference on electrical machines (ICEM), pp. 1804–1810. IEEE (2014)
32.
go back to reference Gonda, A., Paulus, S., Graf, S., Koch, O., Götz, S., Sauer, B.: Basic experimental and numerical investigations to improve the modeling of the electrical capacitance of rolling bearings. Tribol. Int. 193, 109354 (2024)CrossRef Gonda, A., Paulus, S., Graf, S., Koch, O., Götz, S., Sauer, B.: Basic experimental and numerical investigations to improve the modeling of the electrical capacitance of rolling bearings. Tribol. Int. 193, 109354 (2024)CrossRef
33.
go back to reference Graf, S., Werner, M., Koch, O., Götz, S., Sauer, B.: Breakdown voltages in thrust bearings: behavior and Measurement. Tribol. Trans. 66(3), 488–496 (2023)CrossRef Graf, S., Werner, M., Koch, O., Götz, S., Sauer, B.: Breakdown voltages in thrust bearings: behavior and Measurement. Tribol. Trans. 66(3), 488–496 (2023)CrossRef
34.
go back to reference Wittek, E., Kriese, M., Tischmacher, H., Gattermann, S., Ponick, B., Poll, G.: Capacitances and lubricant film thicknesses of motor bearings under different operating conditions. In: The XIX International Conference on Electrical Machines-ICEM 2010, pp. 1–6. IEEE, (2010) Wittek, E., Kriese, M., Tischmacher, H., Gattermann, S., Ponick, B., Poll, G.: Capacitances and lubricant film thicknesses of motor bearings under different operating conditions. In: The XIX International Conference on Electrical Machines-ICEM 2010, pp. 1–6. IEEE, (2010)
35.
go back to reference Medvid, V., Belyakova, I., Maruschak, O., Piscio, V.: A one-dimensional mathematical model of piezoelectric transformers for CAD system. Sci. J. TNTU 108(4), 102–116 (2023) Medvid, V., Belyakova, I., Maruschak, O., Piscio, V.: A one-dimensional mathematical model of piezoelectric transformers for CAD system. Sci. J. TNTU 108(4), 102–116 (2023)
36.
go back to reference Medvid, V., Belyakova, I., Piscio, V., Lupenko, S.: Model of transverse-transverse type piezoelectric transformer. Sci. J. TNTU 102, 96–109 (2021) Medvid, V., Belyakova, I., Piscio, V., Lupenko, S.: Model of transverse-transverse type piezoelectric transformer. Sci. J. TNTU 102, 96–109 (2021)
37.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Babak, V.P., Babak, S.V., Eremenko, V.S. and Kuts, Y.V., Zaporozhets, A.O.: Models and measures for measuring random angular quantities. Models Measures Measurem. Monitor. 61–97 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Babak, V.P., Babak, S.V., Eremenko, V.S. and Kuts, Y.V., Zaporozhets, A.O.: Models and measures for measuring random angular quantities. Models Measures Measurem. Monitor. 61–97 (2021)
38.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Examples of using models and measures on the circle. Models and Measures Meas. Monit. 127–156 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Examples of using models and measures on the circle. Models and Measures Meas. Monit. 127–156 (2021)
39.
go back to reference Purushotham, V., Narayanan, S., Prasad, S.A.: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT and E Int. 38(8), 654–664 (2005)CrossRef Purushotham, V., Narayanan, S., Prasad, S.A.: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT and E Int. 38(8), 654–664 (2005)CrossRef
40.
go back to reference Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using hilbert transform in diagnostic of composite materials by impedance method. Periodica Polytechnica Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using hilbert transform in diagnostic of composite materials by impedance method. Periodica Polytechnica Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef
41.
go back to reference Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef
42.
go back to reference Yiakopoulos, C.T., Gryllias, K.C., Antoniadis, I.A.: Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Syst. Appl. 38(3), 2888–2911 (2011)CrossRef Yiakopoulos, C.T., Gryllias, K.C., Antoniadis, I.A.: Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Syst. Appl. 38(3), 2888–2911 (2011)CrossRef
43.
go back to reference Kankar, P.K., Sharma, S.C., Harsha, S.P.: Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 74(10), 1638–1645 (2011)CrossRef Kankar, P.K., Sharma, S.C., Harsha, S.P.: Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 74(10), 1638–1645 (2011)CrossRef
44.
go back to reference Xian, Z., Pengcheng, Z., Qingxin, Y., Lihua, Z., Xin, Z.: Numerical estimation and optimization of vibration noise due to magnetostriction and magnetic forces for laminated core structure. In: 2014 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 1548–1551. IEEE (2014) Xian, Z., Pengcheng, Z., Qingxin, Y., Lihua, Z., Xin, Z.: Numerical estimation and optimization of vibration noise due to magnetostriction and magnetic forces for laminated core structure. In: 2014 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 1548–1551. IEEE (2014)
45.
go back to reference Zhu, L., Yang, Q., Yan, R., Li, Y., Zhang, X., Yan, W., Zhu, J.: Numerical computation for a new way to reduce vibration and noise due to magnetostriction and magnetic forces of transformer cores. J. Appl. Phys. 113(17) (2013) Zhu, L., Yang, Q., Yan, R., Li, Y., Zhang, X., Yan, W., Zhu, J.: Numerical computation for a new way to reduce vibration and noise due to magnetostriction and magnetic forces of transformer cores. J. Appl. Phys. 113(17) (2013)
46.
go back to reference Gao, Y., Muramatsu, K., Hatim, M.J., Nagata, M.: The effect of laminated structure on coupled magnetic field and mechanical analyses of iron core and its homogenization technique. IEEE Trans. Magn. 47(5), 1358–1361 (2010)CrossRef Gao, Y., Muramatsu, K., Hatim, M.J., Nagata, M.: The effect of laminated structure on coupled magnetic field and mechanical analyses of iron core and its homogenization technique. IEEE Trans. Magn. 47(5), 1358–1361 (2010)CrossRef
47.
go back to reference George, T.J., Seidt, J., Shen, M.H.H., Nicholas, T., Cross, C.J.: Development of a novel vibration-based fatigue testing methodology. Int. J. Fatigue 26(5), 477–486 (2004)CrossRef George, T.J., Seidt, J., Shen, M.H.H., Nicholas, T., Cross, C.J.: Development of a novel vibration-based fatigue testing methodology. Int. J. Fatigue 26(5), 477–486 (2004)CrossRef
48.
go back to reference Akbari, M.R., Nimafar, M., Ganji, D.D., Chalmiani, H.K.: Investigation on non-linear vibration in arched beam for bridges construction via AGM method. Appl. Math. Comput. 298, 95–110 (2017)MathSciNet Akbari, M.R., Nimafar, M., Ganji, D.D., Chalmiani, H.K.: Investigation on non-linear vibration in arched beam for bridges construction via AGM method. Appl. Math. Comput. 298, 95–110 (2017)MathSciNet
49.
go back to reference Karnovsky, I.A., Lebed, E.: Theory of Vibration Protection, pp. 176–182. Springer International Publishing, Switzerland (2016) Karnovsky, I.A., Lebed, E.: Theory of Vibration Protection, pp. 176–182. Springer International Publishing, Switzerland (2016)
50.
go back to reference Qing, G.H., Qiu, J.J., Hu, Y.D.: Vibration analysis of large turbo-generator stator system. In: Proceedings International Conference on Power System Technology, vol. 4, pp. 2168–2172. IEEE (2002) Qing, G.H., Qiu, J.J., Hu, Y.D.: Vibration analysis of large turbo-generator stator system. In: Proceedings International Conference on Power System Technology, vol. 4, pp. 2168–2172. IEEE (2002)
51.
go back to reference Sewak, R., Ranjan, R., Kumar, V.: Experimental modal analysis of stator overhangs of a large turbogenerator. Energy Power Eng. 3(3), 221–226 (2011)CrossRef Sewak, R., Ranjan, R., Kumar, V.: Experimental modal analysis of stator overhangs of a large turbogenerator. Energy Power Eng. 3(3), 221–226 (2011)CrossRef
52.
go back to reference He, Y.L., Deng, W.Q., Peng, B., Ke, M.Q., Tang, G.J., Wan, S.T., Liu, X.Y.: Stator vibration characteristic identification of turbogenerator among single and composite faults composed of static air-gap eccentricity and rotor interturn short circuit. Shock and Vibration (2016) He, Y.L., Deng, W.Q., Peng, B., Ke, M.Q., Tang, G.J., Wan, S.T., Liu, X.Y.: Stator vibration characteristic identification of turbogenerator among single and composite faults composed of static air-gap eccentricity and rotor interturn short circuit. Shock and Vibration (2016)
53.
go back to reference Thomson, W.: Theory of Vibration with Applications. CrC Press (2018) Thomson, W.: Theory of Vibration with Applications. CrC Press (2018)
54.
go back to reference Wirsching, P.H., Paez, T.L., Ortiz, K.: Random vibrations: theory and practice. Courier Corporation (2006) Wirsching, P.H., Paez, T.L., Ortiz, K.: Random vibrations: theory and practice. Courier Corporation (2006)
55.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. Models Meas. Meas. Monit. 1–31 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. Models Meas. Meas. Monit. 1–31 (2021)
56.
go back to reference Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef
57.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M.: Technical provision of diagnostic systems. Diagn. Syst. Energy Equipm. 91–133 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M.: Technical provision of diagnostic systems. Diagn. Syst. Energy Equipm. 91–133 (2020)
58.
go back to reference Reddy, D.R., Sen, A., Johnston, G.L.: Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D 144(3–4), 335–357 (2000)MathSciNetCrossRef Reddy, D.R., Sen, A., Johnston, G.L.: Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D 144(3–4), 335–357 (2000)MathSciNetCrossRef
59.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. Diagnos. Syst. Energy Equipm. 1–22 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. Diagnos. Syst. Energy Equipm. 1–22 (2020)
60.
go back to reference Benarab, A., Boussaada, I., Trabelsi, K., Bonnet, C.: Multiplicity–Induced–Dominancy property for second–order neutral differential equations with application in oscillation damping. Eur. J. Control. 69, 100721 (2023)MathSciNetCrossRef Benarab, A., Boussaada, I., Trabelsi, K., Bonnet, C.: Multiplicity–Induced–Dominancy property for second–order neutral differential equations with application in oscillation damping. Eur. J. Control. 69, 100721 (2023)MathSciNetCrossRef
61.
go back to reference Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. John Wiley & Sons (2011) Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. John Wiley & Sons (2011)
62.
go back to reference Friedland, B.: Control system design: an introduction to state-space methods. Courier Corporat. (2012) Friedland, B.: Control system design: an introduction to state-space methods. Courier Corporat. (2012)
63.
go back to reference Zvaritch, V.: Some singularities of linear AR processes characterization in applied problems of power equipment and power systems diagnosis. In: Power systems research and operation: Selected Problems III, pp. 263–278. Springer Nature Switzerland, Cham (2023) Zvaritch, V.: Some singularities of linear AR processes characterization in applied problems of power equipment and power systems diagnosis. In: Power systems research and operation: Selected Problems III, pp. 263–278. Springer Nature Switzerland, Cham (2023)
64.
go back to reference Lupenko, S.: The mathematical model of cyclic signals in dynamic systems as a cyclically correlated random process. Mathematics 10(18), 3406 (2022)CrossRef Lupenko, S.: The mathematical model of cyclic signals in dynamic systems as a cyclically correlated random process. Mathematics 10(18), 3406 (2022)CrossRef
65.
go back to reference Zvaritch V.: Some mathematical models which could be applied to develop arctic cybersecurity systems. In: Cybersecurity and Resilience in the Arctic, pp. 373–386. IOS Press, (2020) Zvaritch V.: Some mathematical models which could be applied to develop arctic cybersecurity systems. In: Cybersecurity and Resilience in the Arctic, pp. 373–386. IOS Press, (2020)
66.
go back to reference Mondal, S., Mahanta, C.: Adaptive second-order sliding mode controller for a twin rotor multi-input–multi-output system. IET Control Theory Appl. 6(14), 2157–2167 (2012)MathSciNetCrossRef Mondal, S., Mahanta, C.: Adaptive second-order sliding mode controller for a twin rotor multi-input–multi-output system. IET Control Theory Appl. 6(14), 2157–2167 (2012)MathSciNetCrossRef
67.
go back to reference Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Autom. Control 45(9), 1711–1717 (2000)MathSciNetCrossRef Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Autom. Control 45(9), 1711–1717 (2000)MathSciNetCrossRef
68.
go back to reference Ahmad, S.M., Chipperfield, A.J., Tokhi, M.O.: Dynamic modelling and open-loop control of a twin rotor multi-input multi-output system. Proceedings of the institution of mechanical engineers. Part I: J. Syst. Cont. Eng. 216(6), 477–496 (2002) Ahmad, S.M., Chipperfield, A.J., Tokhi, M.O.: Dynamic modelling and open-loop control of a twin rotor multi-input multi-output system. Proceedings of the institution of mechanical engineers. Part I: J. Syst. Cont. Eng. 216(6), 477–496 (2002)
69.
go back to reference Yan, R., Gao, R.X.: Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis. Tribol. Int. 42(2), 293–302 (2009)CrossRef Yan, R., Gao, R.X.: Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis. Tribol. Int. 42(2), 293–302 (2009)CrossRef
70.
go back to reference Pham, M.T., Kim, J.M., Kim, C.H.: Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram. Appl. Sci. 10(18), 6385 (2020)CrossRef Pham, M.T., Kim, J.M., Kim, C.H.: Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram. Appl. Sci. 10(18), 6385 (2020)CrossRef
71.
go back to reference Khadersab, A., Shivakumar, S.: Vibration analysis techniques for rotating machinery and its effect on bearing faults. Proc. Manuf. 20, 247–252 (2018) Khadersab, A., Shivakumar, S.: Vibration analysis techniques for rotating machinery and its effect on bearing faults. Proc. Manuf. 20, 247–252 (2018)
72.
go back to reference Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Conference on Computer Science and Information Technologies, pp. 154–172. Springer International Publishing, Cham (2019) Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Conference on Computer Science and Information Technologies, pp. 154–172. Springer International Publishing, Cham (2019)
73.
go back to reference Bäßler, R., Bäßler, T., Kley, M.: Classification of load and rotational speed at wire-race bearings using convolutional neural networks with vibration spectrograms. tm-Technisches Messen 89(5), 352–362 (2022) Bäßler, R., Bäßler, T., Kley, M.: Classification of load and rotational speed at wire-race bearings using convolutional neural networks with vibration spectrograms. tm-Technisches Messen 89(5), 352–362 (2022)
74.
go back to reference Arun, P., Madhukumar, S., Careena, P.: A Method for the investigation of bearing vibration based on spectrogram image comparison. In: IOP Conference Series: Materials Science and Engineering, vol. 396, No. 1, p. 012044. IOP Publishing (2018) Arun, P., Madhukumar, S., Careena, P.: A Method for the investigation of bearing vibration based on spectrogram image comparison. In: IOP Conference Series: Materials Science and Engineering, vol. 396, No. 1, p. 012044. IOP Publishing (2018)
75.
go back to reference Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef
76.
go back to reference Bai, T., Yang, J., Duan, L., Wang, Y.: Fault diagnosis method research of mechanical equipment based on sensor correlation analysis and deep learning. Shock. Vib. 2020, 1–11 (2020)CrossRef Bai, T., Yang, J., Duan, L., Wang, Y.: Fault diagnosis method research of mechanical equipment based on sensor correlation analysis and deep learning. Shock. Vib. 2020, 1–11 (2020)CrossRef
77.
go back to reference Ming, A.B., Qin, Z.Y., Zhang, W., Chu, F.L.: Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 41(1–2), 141–154 (2013)CrossRef Ming, A.B., Qin, Z.Y., Zhang, W., Chu, F.L.: Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 41(1–2), 141–154 (2013)CrossRef
78.
go back to reference Liu, H., Zhang, J., Cheng, Y., Lu, C.: Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis. J. Sound Vib. 385, 350–371 (2016)CrossRef Liu, H., Zhang, J., Cheng, Y., Lu, C.: Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis. J. Sound Vib. 385, 350–371 (2016)CrossRef
79.
go back to reference Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef
80.
go back to reference Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), pp. 15–19. Zaporizhzhia, Ukraine, April (2019) Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), pp. 15–19. Zaporizhzhia, Ukraine, April (2019)
81.
go back to reference Thao, N.X., Tuan, V.K., Hong, N.T.: Integral transforms of Fourier cosine and sine generalized convolution type. Int. J. Math. Mathemat. Sci. 2007 (2007) Thao, N.X., Tuan, V.K., Hong, N.T.: Integral transforms of Fourier cosine and sine generalized convolution type. Int. J. Math. Mathemat. Sci. 2007 (2007)
83.
go back to reference Nazarchuk, Z., Skalskyi, V., Serhiyenko, O.: Acoustic emission. Foundat. Eng. Mech. (2017) Nazarchuk, Z., Skalskyi, V., Serhiyenko, O.: Acoustic emission. Foundat. Eng. Mech. (2017)
84.
go back to reference Zhao, L., Kang, L., Yao, S.: Research and application of acoustic emission signal processing technology. IEEE Access 7, 984–993 (2018)CrossRef Zhao, L., Kang, L., Yao, S.: Research and application of acoustic emission signal processing technology. IEEE Access 7, 984–993 (2018)CrossRef
85.
go back to reference Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Vol. 1, pp. 48–51. IEEE (2018) Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Vol. 1, pp. 48–51. IEEE (2018)
86.
go back to reference Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11 s. In: Systems, Decision and Control in Energy II. Springer International Publishing, Cham, pp. 141–151 (2021) Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11 s. In: Systems, Decision and Control in Energy II. Springer International Publishing, Cham, pp. 141–151 (2021)
87.
go back to reference Pappas, Y.Z., Kontsos, A., Loutas, T.H., Kostopoulos, V.: On the characterization of continuous fibres fracture by quantifying acoustic emission and acousto-ultrasonics waveforms. NDT E Int. 37(5), 389–401 (2004)CrossRef Pappas, Y.Z., Kontsos, A., Loutas, T.H., Kostopoulos, V.: On the characterization of continuous fibres fracture by quantifying acoustic emission and acousto-ultrasonics waveforms. NDT E Int. 37(5), 389–401 (2004)CrossRef
88.
go back to reference Holford, K.M.: Acoustic emission–basic principles and future directions. Strain 36(2), 51–54 (2000)CrossRef Holford, K.M.: Acoustic emission–basic principles and future directions. Strain 36(2), 51–54 (2000)CrossRef
89.
go back to reference Bussiba, A., Kupiec, M., Ifergane, S., Piat, R., Böhlke, T.: Damage evolution and fracture events sequence in various composites by acoustic emission technique. Compos. Sci. Technol. 68(5), 1144–1155 (2008) Bussiba, A., Kupiec, M., Ifergane, S., Piat, R., Böhlke, T.: Damage evolution and fracture events sequence in various composites by acoustic emission technique. Compos. Sci. Technol. 68(5), 1144–1155 (2008)
90.
go back to reference Leonenko, N., Scalas, E., Trinh, M.: Limit theorems for the fractional nonhomogeneous Poisson process. J. Appl. Probab. 56(1), 246–264 (2019)MathSciNetCrossRef Leonenko, N., Scalas, E., Trinh, M.: Limit theorems for the fractional nonhomogeneous Poisson process. J. Appl. Probab. 56(1), 246–264 (2019)MathSciNetCrossRef
91.
go back to reference Zocher, M.: Multivariate counting processes. Professoren des Inst. für Math. Stochastik (2006) Zocher, M.: Multivariate counting processes. Professoren des Inst. für Math. Stochastik (2006)
92.
go back to reference Djouadi, S.M., Maroulas, V., Pan, X., Xiong, J.: Consistency and asymptotics of a Poisson intensity least-squares estimator for partially observed jump–diffusion processes. Statist. Probab. Lett. 123, 8–16 (2017)MathSciNetCrossRef Djouadi, S.M., Maroulas, V., Pan, X., Xiong, J.: Consistency and asymptotics of a Poisson intensity least-squares estimator for partially observed jump–diffusion processes. Statist. Probab. Lett. 123, 8–16 (2017)MathSciNetCrossRef
93.
go back to reference Gao, X., Zhu, L.: Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues. Queueing Syst. 90, 161–206 (2018)MathSciNetCrossRef Gao, X., Zhu, L.: Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues. Queueing Syst. 90, 161–206 (2018)MathSciNetCrossRef
94.
go back to reference Shang, Y., Liu, Q., Niu, B., Zhang, M., Qi, W., Wu, J.: Mechanical fault diagnosis system based on acoustic feature analysis in gas insulated switchgear. In: 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), pp. 610–615. IEEE (2017) Shang, Y., Liu, Q., Niu, B., Zhang, M., Qi, W., Wu, J.: Mechanical fault diagnosis system based on acoustic feature analysis in gas insulated switchgear. In: 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), pp. 610–615. IEEE (2017)
95.
go back to reference Lai, Y., Yu, W.: Analytical solution for forced vibration of a simply-supported V-shaped folded plate roof. Thin-Walled Structures 40(3), 215–223 (2002)CrossRef Lai, Y., Yu, W.: Analytical solution for forced vibration of a simply-supported V-shaped folded plate roof. Thin-Walled Structures 40(3), 215–223 (2002)CrossRef
96.
go back to reference Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press (2011)CrossRef Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press (2011)CrossRef
97.
go back to reference Jorgensen, P.E.: Analysis and probability: wavelets, signals, fractals (Vol. 234). Springer Science & Business Media (2006) Jorgensen, P.E.: Analysis and probability: wavelets, signals, fractals (Vol. 234). Springer Science & Business Media (2006)
98.
go back to reference Chen, Z., Ma, Q., Yan, X., Lou, S.: Prestress design of ellipsoid hybrid form and parameter analysis of design factors. J. Aerosp. Eng. 32(1), 04018137 (2019)CrossRef Chen, Z., Ma, Q., Yan, X., Lou, S.: Prestress design of ellipsoid hybrid form and parameter analysis of design factors. J. Aerosp. Eng. 32(1), 04018137 (2019)CrossRef
99.
go back to reference Gardiner, C.: Stochastic Methods, vol. 4. Springer, Berlin (2009) Gardiner, C.: Stochastic Methods, vol. 4. Springer, Berlin (2009)
100.
go back to reference Debusschere, B.J., Najm, H.N., Pébay, P.P., Knio, O.M., Ghanem, R.G., Le Maitre, O.P.: Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26(2), 698–719 (2004) Debusschere, B.J., Najm, H.N., Pébay, P.P., Knio, O.M., Ghanem, R.G., Le Maitre, O.P.: Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26(2), 698–719 (2004)
101.
go back to reference Crandall, S.H., Mark, W.D.: Random Vibration in Mechanical Systems. Academic Press (2014) Crandall, S.H., Mark, W.D.: Random Vibration in Mechanical Systems. Academic Press (2014)
102.
go back to reference Wong, E., Hajek, B.: Stochastic Processes in Engineering Systems. Springer Science & Business Media (2012) Wong, E., Hajek, B.: Stochastic Processes in Engineering Systems. Springer Science & Business Media (2012)
103.
go back to reference Sverdlova, A., Zaporozhets, A.: Predicting anomaly conditions of energy equipment using neural networks. In: E3S Web of Conferences, vol. 280, p. 09005 (2021) Sverdlova, A., Zaporozhets, A.: Predicting anomaly conditions of energy equipment using neural networks. In: E3S Web of Conferences, vol. 280, p. 09005 (2021)
104.
go back to reference Wu, Y., Zhu, W.Q.: Stationary response of MDOF dissipated Hamiltonian systems to Poisson white noises (2008) Wu, Y., Zhu, W.Q.: Stationary response of MDOF dissipated Hamiltonian systems to Poisson white noises (2008)
105.
go back to reference Veletić, M., Balasingham, I.: An information theory of neuro-transmission in multiple-access synaptic channels. IEEE Trans. Commun. 68(2), 841–853 (2019)CrossRef Veletić, M., Balasingham, I.: An information theory of neuro-transmission in multiple-access synaptic channels. IEEE Trans. Commun. 68(2), 841–853 (2019)CrossRef
106.
go back to reference Cacciapuoti, A.S., Piras, A., Caleffi, M.: Modeling the dynamic processing of the presynaptic terminals for intrabody nanonetworks. IEEE Trans. Commun. 64(4), 1636–1645 (2016)CrossRef Cacciapuoti, A.S., Piras, A., Caleffi, M.: Modeling the dynamic processing of the presynaptic terminals for intrabody nanonetworks. IEEE Trans. Commun. 64(4), 1636–1645 (2016)CrossRef
107.
go back to reference Cacciapuoti, A. S., Caleffi, M., Piras, A.: Neuronal communication: presynaptic terminals as transmitter array. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (pp. 1–5) (2015) Cacciapuoti, A. S., Caleffi, M., Piras, A.: Neuronal communication: presynaptic terminals as transmitter array. In: Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (pp. 1–5) (2015)
108.
go back to reference Zhang, W., Li, C., Peng, G., Chen, Y., Zhang, Z.: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 100, 439–453 (2018)CrossRef Zhang, W., Li, C., Peng, G., Chen, Y., Zhang, Z.: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 100, 439–453 (2018)CrossRef
109.
go back to reference Newton, R.U., Dugan, E.: Application of strength diagnosis. Strength Condit. J. 24(5), 50–59 (2002)CrossRef Newton, R.U., Dugan, E.: Application of strength diagnosis. Strength Condit. J. 24(5), 50–59 (2002)CrossRef
110.
go back to reference Kovtun, S., Kuts, Y., Malko, V., Fryz, M., Shcherbak, L., Kuts, V.: Application of Hilbert transform for power quality indicators monitoring in general purpose grids. Syst. Res. Energy 2(77), 71–83 (2024) Kovtun, S., Kuts, Y., Malko, V., Fryz, M., Shcherbak, L., Kuts, V.: Application of Hilbert transform for power quality indicators monitoring in general purpose grids. Syst. Res. Energy 2(77), 71–83 (2024)
111.
go back to reference Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., Zhang, T.: Deep model based domain adaptation for fault diagnosis. IEEE Trans. Industr. Electron. 64(3), 2296–2305 (2016)CrossRef Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., Zhang, T.: Deep model based domain adaptation for fault diagnosis. IEEE Trans. Industr. Electron. 64(3), 2296–2305 (2016)CrossRef
112.
go back to reference Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, vol. 31. Springer Science & Business Media (2013) Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, vol. 31. Springer Science & Business Media (2013)
113.
go back to reference Dougherty, E.R., Barrera, J.: Pattern recognition theory in nonlinear signal processing. J. Math. Imag. Vis. 16, 181–197 (2002)MathSciNetCrossRef Dougherty, E.R., Barrera, J.: Pattern recognition theory in nonlinear signal processing. J. Math. Imag. Vis. 16, 181–197 (2002)MathSciNetCrossRef
114.
go back to reference Theodoridis, S., Koutroumbas, K.: Pattern recognition. Elsevier (2006) Theodoridis, S., Koutroumbas, K.: Pattern recognition. Elsevier (2006)
115.
go back to reference Lugosi, G.: Pattern classification and learning theory. In: Principles of nonparametric learning, pp. 1–56. Springer Vienna, Vienna (2002) Lugosi, G.: Pattern classification and learning theory. In: Principles of nonparametric learning, pp. 1–56. Springer Vienna, Vienna (2002)
116.
go back to reference Obuchowski, J., Zimroz, R., Wyłomańska, A.: Blind equalization using combined skewness–kurtosis criterion for gearbox vibration enhancement. Measurement 88, 34–44 (2016)CrossRef Obuchowski, J., Zimroz, R., Wyłomańska, A.: Blind equalization using combined skewness–kurtosis criterion for gearbox vibration enhancement. Measurement 88, 34–44 (2016)CrossRef
117.
go back to reference Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna Elektrodynamika 4, 070 (2021)CrossRef Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna Elektrodynamika 4, 070 (2021)CrossRef
118.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef
119.
go back to reference Poveda-Martinez, P., Ramis-Soriano, J.: A comparison between psychoacoustic parameters and condition indicators for machinery fault diagnosis using vibration signals. Appl. Acoust. 166, 107364 (2020)CrossRef Poveda-Martinez, P., Ramis-Soriano, J.: A comparison between psychoacoustic parameters and condition indicators for machinery fault diagnosis using vibration signals. Appl. Acoust. 166, 107364 (2020)CrossRef
120.
go back to reference Li, Y., Peter, W.T., Wang, X.: Recovery of vibration signal based on a super-exponential algorithm. J. Sound Vib. 311(1–2), 537–553 (2008)CrossRef Li, Y., Peter, W.T., Wang, X.: Recovery of vibration signal based on a super-exponential algorithm. J. Sound Vib. 311(1–2), 537–553 (2008)CrossRef
121.
go back to reference Joshi, A.: Use of acceleration spectra for determining the frequency-dependent attenuation coefficient and source parameters. Bull. Seismol. Soc. Am. 96(6), 2165–2180 (2006)CrossRef Joshi, A.: Use of acceleration spectra for determining the frequency-dependent attenuation coefficient and source parameters. Bull. Seismol. Soc. Am. 96(6), 2165–2180 (2006)CrossRef
122.
go back to reference Bohachev, I., Babak, V., Zaporozhets, A.: Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Technical Electrodynamics 3, 69–78 (2022) Bohachev, I., Babak, V., Zaporozhets, A.: Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Technical Electrodynamics 3, 69–78 (2022)
123.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for standardless measurements of the composite materials characteristics. Models Meas. Measur. Monit. 157–190 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for standardless measurements of the composite materials characteristics. Models Meas. Measur. Monit. 157–190 (2021)
124.
go back to reference Jazirehpour, M., Ebrahimi, S.S.: Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloy. Compd. 638, 188–196 (2015)CrossRef Jazirehpour, M., Ebrahimi, S.S.: Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloy. Compd. 638, 188–196 (2015)CrossRef
125.
go back to reference Lipovsky, B.P., Dunham, E.M.: Vibrational modes of hydraulic fractures: inference of fracture geometry from resonant frequencies and attenuation. J. Geophys. Res.: Solid Earth 120(2), 1080–1107 (2015)CrossRef Lipovsky, B.P., Dunham, E.M.: Vibrational modes of hydraulic fractures: inference of fracture geometry from resonant frequencies and attenuation. J. Geophys. Res.: Solid Earth 120(2), 1080–1107 (2015)CrossRef
126.
go back to reference Babak, V., Bohachev, I., Zaporozhets, A., Khaidurov, V., Havrysh, V., Kalinichenko, A.: Some features of modeling ultrasound propagation in non-destructive control of metal structures based on the magnetostrictive effect. Electronics 12(3), 477 (2023)CrossRef Babak, V., Bohachev, I., Zaporozhets, A., Khaidurov, V., Havrysh, V., Kalinichenko, A.: Some features of modeling ultrasound propagation in non-destructive control of metal structures based on the magnetostrictive effect. Electronics 12(3), 477 (2023)CrossRef
127.
go back to reference Barndorff-Nielsen, O.E., Maejima, M., Sato, K.I.: Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 1–33 (2006) Barndorff-Nielsen, O.E., Maejima, M., Sato, K.I.: Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 1–33 (2006)
128.
go back to reference Di Nunno, G.: Stochastic integral representations, stochastic derivatives and minimal variance hedging. Stochast. Stochast. Rep. 73(1–2), 181–198 (2002)MathSciNetCrossRef Di Nunno, G.: Stochastic integral representations, stochastic derivatives and minimal variance hedging. Stochast. Stochast. Rep. 73(1–2), 181–198 (2002)MathSciNetCrossRef
129.
go back to reference Ji, U.C., Obata, N.: Quantum stochastic integral representations of Fock space operators. Stochast. An Int. J. Probabil. Stochast. Proc. 81(3–4), 367–384 (2009) Ji, U.C., Obata, N.: Quantum stochastic integral representations of Fock space operators. Stochast. An Int. J. Probabil. Stochast. Proc. 81(3–4), 367–384 (2009)
130.
go back to reference Morikawa, H.: An approximate method to represent the extreme values of non-stationary gaussian white noise. Morikawa, H.: An approximate method to represent the extreme values of non-stationary gaussian white noise.
131.
go back to reference Zhu, Z., Gong, W., Yu, Z., Wang, K.: Investigation on the EPC method in analyzing the nonlinear oscillators under both harmonic and Gaussian white noise excitations. J. Vib. Control 29(13–14), 2935–2949 (2023)MathSciNetCrossRef Zhu, Z., Gong, W., Yu, Z., Wang, K.: Investigation on the EPC method in analyzing the nonlinear oscillators under both harmonic and Gaussian white noise excitations. J. Vib. Control 29(13–14), 2935–2949 (2023)MathSciNetCrossRef
132.
go back to reference Wang, K., Zhu, Z., Xu, L.: Transient probabilistic solutions of stochastic oscillator with even nonlinearities by exponential polynomial closure method. J. Vib. Control 28(9–10), 1086–1094 (2022)MathSciNetCrossRef Wang, K., Zhu, Z., Xu, L.: Transient probabilistic solutions of stochastic oscillator with even nonlinearities by exponential polynomial closure method. J. Vib. Control 28(9–10), 1086–1094 (2022)MathSciNetCrossRef
133.
134.
go back to reference Arnau, A. (ed.): Piezoelectric Transducers and Applications (Vol. 2004). Springer, Berlin (2004) Arnau, A. (ed.): Piezoelectric Transducers and Applications (Vol. 2004). Springer, Berlin (2004)
135.
go back to reference Cappon, H., Keesman, K.J.: Numerical modeling of piezoelectric transducers using physical parameters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(5), 1023–1032 (2012)CrossRef Cappon, H., Keesman, K.J.: Numerical modeling of piezoelectric transducers using physical parameters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(5), 1023–1032 (2012)CrossRef
136.
go back to reference Roh, Y., Varadan, V.V., Varadan, V.K.: Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 836–847 (2002)CrossRef Roh, Y., Varadan, V.V., Varadan, V.K.: Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 836–847 (2002)CrossRef
Metadata
Title
Stochastic Models of Diagnostic Signals Arising During the Operation of Electrical Equipment
Authors
Vitalii Babak
Sergii Babak
Artur Zaporozhets
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-76253-6_3