Skip to main content
Top

2024 | OriginalPaper | Chapter

Stochastic Population Growth Model Using Three-Point Fractional Formula

Authors : Shameseddin Alshorm, Iqbal M. Batiha

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the intricacies of stochastic population growth models, moving beyond traditional deterministic approaches. It introduces a modified three-point fractional formula to approximate the Riemann-Liouville fractional integral operator, providing a novel numerical solution for fractional stochastic differential equations. The study addresses challenges such as the role of random effects and sex-specific population growth, offering insights into the age distribution and growth rate control. The chapter also validates its proposed numerical method by comparing it with the Euler-Maruyama method and an exact solution, demonstrating its effectiveness and accuracy. This work is particularly relevant in understanding population dynamics, especially in cases where random fluctuations play a significant role.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Batiha, I.M., Jebril, I.H., Alshorm, S., Al-nana, A.A., Alkhazaleh, S., Momani, S.: Handling systems of fractional stochastic differential equations using modified fractional Euler method. Glob. Stoch. Anal. 11(1), 95–105 (2024) Batiha, I.M., Jebril, I.H., Alshorm, S., Al-nana, A.A., Alkhazaleh, S., Momani, S.: Handling systems of fractional stochastic differential equations using modified fractional Euler method. Glob. Stoch. Anal. 11(1), 95–105 (2024)
2.
go back to reference Batiha, I.M., Abubaker, A.A., Jebril, I.H., Al-Shaikh, S.B., Matarneh, K.: A numerical approach of handling fractional stochastic differential equations. Axioms 12(4), 388 (2023)CrossRef Batiha, I.M., Abubaker, A.A., Jebril, I.H., Al-Shaikh, S.B., Matarneh, K.: A numerical approach of handling fractional stochastic differential equations. Axioms 12(4), 388 (2023)CrossRef
3.
go back to reference Batiha, I.M., Jebril, I.H., Alshorm, S., Aljazzazi, M., Alkhazaleh, S.: Numerical approach for solving incommensurate higher-order fractional differential equations. Nonlinear Dyn. Syst. Theor. 24(2), 123–134 (2024)MathSciNet Batiha, I.M., Jebril, I.H., Alshorm, S., Aljazzazi, M., Alkhazaleh, S.: Numerical approach for solving incommensurate higher-order fractional differential equations. Nonlinear Dyn. Syst. Theor. 24(2), 123–134 (2024)MathSciNet
4.
go back to reference Batiha, I.M., Momani, S., Alshorm, S., Ouannas, A.: Numerical solutions of stochastic differential equation using modified three-point fractional formula. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 2023, pp. 1–5. https://doi.org/10.1109/ICFDA58234.2023.10153192 Batiha, I.M., Momani, S., Alshorm, S., Ouannas, A.: Numerical solutions of stochastic differential equation using modified three-point fractional formula. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 2023, pp. 1–5. https://​doi.​org/​10.​1109/​ICFDA58234.​2023.​10153192
5.
go back to reference Lamamri, A., Jebril, I., Dahmani, Z., Anber, A., Rakah, M., Alkhazaleh, S.: Fractional calculus in beam deflection: analyzing nonlinear systems with Caputo and conformable derivatives. AIMS Mathematics 9(8), 21609–21627 (2024) Lamamri, A., Jebril, I., Dahmani, Z., Anber, A., Rakah, M., Alkhazaleh, S.: Fractional calculus in beam deflection: analyzing nonlinear systems with Caputo and conformable derivatives. AIMS Mathematics 9(8), 21609–21627 (2024)
6.
go back to reference Allen, E.: Modeling with Itô stochastic differential equations. Math. Model. Theor. Appl. 22 (2007) Allen, E.: Modeling with Itô stochastic differential equations. Math. Model. Theor. Appl. 22 (2007)
7.
go back to reference Song, M., Yu, H.: Convergence and stability of implicit compensated Euler method for stochastic differential equations with Poisson random measure. Adv. Differ. Eq. 2012(1), 214 (2012)MathSciNetCrossRef Song, M., Yu, H.: Convergence and stability of implicit compensated Euler method for stochastic differential equations with Poisson random measure. Adv. Differ. Eq. 2012(1), 214 (2012)MathSciNetCrossRef
8.
go back to reference Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992)CrossRef Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992)CrossRef
9.
go back to reference Farnoosh, R., Rezazadeh, H., Sobhani, A., Behboudi, M.: Analytical solutions for stochastic differential equations via martingale processes. Math. Sci. 9(2), 87–92 (2015)MathSciNetCrossRef Farnoosh, R., Rezazadeh, H., Sobhani, A., Behboudi, M.: Analytical solutions for stochastic differential equations via martingale processes. Math. Sci. 9(2), 87–92 (2015)MathSciNetCrossRef
10.
go back to reference Zhan, Q.: Mean-square numerical approximations to random periodic solutions of stochastic differential equations. Adv. Differ. Eq. 2015(1), 292 (2015)MathSciNetCrossRef Zhan, Q.: Mean-square numerical approximations to random periodic solutions of stochastic differential equations. Adv. Differ. Eq. 2015(1), 292 (2015)MathSciNetCrossRef
11.
go back to reference Yin, Z., Gan, S.: An improved Milstein method for stiff stochastic differential equations. Adv. Differ. Eq. 1, 369 (2015) Yin, Z., Gan, S.: An improved Milstein method for stiff stochastic differential equations. Adv. Differ. Eq. 1, 369 (2015)
12.
go back to reference Diethelm, K.: The analysis of differential equations of fractional order: an application-oriented exposition using differential operators of Caputo type. In: Lecture Notes in Mathematics (2004) Diethelm, K.: The analysis of differential equations of fractional order: an application-oriented exposition using differential operators of Caputo type. In: Lecture Notes in Mathematics (2004)
13.
go back to reference Batiha, I., Alshorm, S., Jebril, I., Hammad, M.: A brief review about fractional calculus. Int. J. Open Prob. Comput. Sci. Math. 15, 39–56 (2022) Batiha, I., Alshorm, S., Jebril, I., Hammad, M.: A brief review about fractional calculus. Int. J. Open Prob. Comput. Sci. Math. 15, 39–56 (2022)
14.
go back to reference Batiha, I.M., Obeidat, A., Alshorm, S., Alotaibi, A., Alsubaie, H., Momani, S., Albdareen, M., Zouidi, F., Eldin, S.M., Jahanshahi, H.: A numerical confirmation of a fractional-order COVID-19 model’s efficiency. Symmetry 14(12), 2583 (2022)CrossRef Batiha, I.M., Obeidat, A., Alshorm, S., Alotaibi, A., Alsubaie, H., Momani, S., Albdareen, M., Zouidi, F., Eldin, S.M., Jahanshahi, H.: A numerical confirmation of a fractional-order COVID-19 model’s efficiency. Symmetry 14(12), 2583 (2022)CrossRef
15.
go back to reference Batiha, I.M., Ababneh, O.Y., Al-Nana, A.A., Alshanti, W.G., Alshorm, S., Momani, S.: A numerical implementation of fractional-order PID controllers for autonomous vehicles. Axioms 12(3), 306 (2023)CrossRef Batiha, I.M., Ababneh, O.Y., Al-Nana, A.A., Alshanti, W.G., Alshorm, S., Momani, S.: A numerical implementation of fractional-order PID controllers for autonomous vehicles. Axioms 12(3), 306 (2023)CrossRef
16.
go back to reference Batiha, I.M., Alshorm, S., Jebril, I., Zraiqat, A., Momani, Z., Momani, S.: Modified 5-point fractional formula with Richardson extrapolation. AIMS Math 8(4), 9520–9534 (2023)MathSciNetCrossRef Batiha, I.M., Alshorm, S., Jebril, I., Zraiqat, A., Momani, Z., Momani, S.: Modified 5-point fractional formula with Richardson extrapolation. AIMS Math 8(4), 9520–9534 (2023)MathSciNetCrossRef
17.
go back to reference Kloeden, P.E., Platen, E., Kloeden, P.E., Platen, E.: Stochastic Differential Equations. Springer, Berlin Heidelberg (1992) Kloeden, P.E., Platen, E., Kloeden, P.E., Platen, E.: Stochastic Differential Equations. Springer, Berlin Heidelberg (1992)
18.
go back to reference Batiha, I.M., Alshorm, S., Ouannas, A., Momani, S., Ababneh, O.Y., Albdareen, M.: Modified three-point fractional formulas with Richardson extrapolation. Mathematics 10(19), 3489 (2022)CrossRef Batiha, I.M., Alshorm, S., Ouannas, A., Momani, S., Ababneh, O.Y., Albdareen, M.: Modified three-point fractional formulas with Richardson extrapolation. Mathematics 10(19), 3489 (2022)CrossRef
19.
go back to reference Batiha, I.M., Alshorm, S., Al-Husban, A., Saadeh, R., Gharib, G., Momani, S.: The n-point composite fractional formula for approximating Riemann-Liouville integrator. Symmetry (2023) Batiha, I.M., Alshorm, S., Al-Husban, A., Saadeh, R., Gharib, G., Momani, S.: The n-point composite fractional formula for approximating Riemann-Liouville integrator. Symmetry (2023)
Metadata
Title
Stochastic Population Growth Model Using Three-Point Fractional Formula
Authors
Shameseddin Alshorm
Iqbal M. Batiha
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_31

Premium Partner