Skip to main content
Top

2023 | OriginalPaper | Chapter

Strain-Hardening Cement-based Composites (SHCC) for Impact Strengthening of Buildings: Recent Advances in the DFG Research Training Group 2250

Authors : Cesare Signorini, Viktor Mechtcherine

Published in: Strain Hardening Cementitious Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Concrete is by far the most widespread construction material worldwide for buildings and infrastructures. While offering wide range of advantages, concrete structures are vulnerable to impact loading such as collisions, rock fall or explosions. This can be traced back to the intrinsically brittle nature of the material. Against this background, the Research Training Group (RTG) 2250 funded by the German Research Foundation (DFG) focuses on the development of strengthening overlays made of strain-hardening cement-based composites (SHCC) and other quasi-ductile mineral based materials capable of drastically enhancing the impact resistance of existing concrete structures. Multidisciplinary collaborative work is carried out by three renowned research institutions in Dresden with nine departments involved. In this contribution, an overview of the recent achievements in the RTG 2250 work are presented, spanning from the design of new sustainable SHCC as high-ductility matrices for textile-reinforced strengthening layers to the structural performance of such layers under impact loading. The latter is assessed by means of customized real-scale test protocols. Furthermore, some insights into the advanced techniques of data acquisition and management, numerical modeling as well as sustainability and resilience assessment are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, V.C.: On engineered cementitious composites (ECC) a review of the material and its applications. J. Adv. Concr. Technol. 1(3), 215–230 (2003)CrossRef Li, V.C.: On engineered cementitious composites (ECC) a review of the material and its applications. J. Adv. Concr. Technol. 1(3), 215–230 (2003)CrossRef
2.
go back to reference Vo, D.M., Sennewald, C., Hoffmann, G., Cherif, C.: Fiber-based 3D cellular reinforcing structures for mineral-bonded composites with enhanced structural impact tolerance. Int. J. Civil Environ. Eng. 12(5), 582–586 (2018) Vo, D.M., Sennewald, C., Hoffmann, G., Cherif, C.: Fiber-based 3D cellular reinforcing structures for mineral-bonded composites with enhanced structural impact tolerance. Int. J. Civil Environ. Eng. 12(5), 582–586 (2018)
3.
go back to reference Gaben, M., Goldfeld, Y.: Self-sensory carbon-based textile reinforced concrete beams-characterization of the structural-electrical response by AC measurements. Sens. Actuators A: Phys. 334, 113322 (2022)CrossRef Gaben, M., Goldfeld, Y.: Self-sensory carbon-based textile reinforced concrete beams-characterization of the structural-electrical response by AC measurements. Sens. Actuators A: Phys. 334, 113322 (2022)CrossRef
4.
go back to reference Wölfel, E., Brünig, H., Curosu, I., Mechtcherine, V., Scheffler, C.: Dynamic single-fiber pull-out of polypropylene fibers produced with different mechanical and surface properties for concrete reinforcement. Materials 14(4), 722 (2021)CrossRef Wölfel, E., Brünig, H., Curosu, I., Mechtcherine, V., Scheffler, C.: Dynamic single-fiber pull-out of polypropylene fibers produced with different mechanical and surface properties for concrete reinforcement. Materials 14(4), 722 (2021)CrossRef
5.
go back to reference Sharma, M., Bishnoi, S., Martirena, F., Scrivener, K.: Limestone calcined clay cement and concrete: a state-of-the-art review. Cement Concr. Res. 149, 106564 (2021)CrossRef Sharma, M., Bishnoi, S., Martirena, F., Scrivener, K.: Limestone calcined clay cement and concrete: a state-of-the-art review. Cement Concr. Res. 149, 106564 (2021)CrossRef
6.
go back to reference Wang, L., et al.: On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement Concr. Res. 144, 106421 (2021)CrossRef Wang, L., et al.: On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement Concr. Res. 144, 106421 (2021)CrossRef
7.
go back to reference Heravi, A.A., Curosu, I., Mechtcherine, V.: A gravity-driven split hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading. Cement Concr. Comp. 105, 103430 (2020)CrossRef Heravi, A.A., Curosu, I., Mechtcherine, V.: A gravity-driven split hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading. Cement Concr. Comp. 105, 103430 (2020)CrossRef
8.
go back to reference Tawfik, A., Curosu, I., Alsous, G., Mechtcherine, V.: A testing device to investigate the properties of strain-hardening, cement-based composites (SHCC) under impact shear loading. Int. J. Impact Eng. 167, 104280 (2022)CrossRef Tawfik, A., Curosu, I., Alsous, G., Mechtcherine, V.: A testing device to investigate the properties of strain-hardening, cement-based composites (SHCC) under impact shear loading. Int. J. Impact Eng. 167, 104280 (2022)CrossRef
9.
go back to reference Hering, M., Kühn, T., Curbach, M.: Small-scale plate tests with fine concrete in experiment and first simplified simulation. Struct. Concr. 22(2), 637–649 (2021)CrossRef Hering, M., Kühn, T., Curbach, M.: Small-scale plate tests with fine concrete in experiment and first simplified simulation. Struct. Concr. 22(2), 637–649 (2021)CrossRef
10.
go back to reference Hering, M., Curbach, M.: Strengthening of RC plates with mineral-bonded composite layers for enhanced impact safety. In: MATEC Web of Conferences. vol. 323, pp. 01015 EDP Sciences (2020) Hering, M., Curbach, M.: Strengthening of RC plates with mineral-bonded composite layers for enhanced impact safety. In: MATEC Web of Conferences. vol. 323, pp. 01015 EDP Sciences (2020)
11.
go back to reference Leicht, L., Beckmann, B., Curbach, M.: Influences on the structural response of beams in drop tower experiments. Civil Eng. Design 3(5–6), 192–209 (2021)CrossRef Leicht, L., Beckmann, B., Curbach, M.: Influences on the structural response of beams in drop tower experiments. Civil Eng. Design 3(5–6), 192–209 (2021)CrossRef
12.
go back to reference Tamsen, E., Curosu, I., Mechtcherine, V., Balzani, D.: Computational micro-macro analysis of impact on strain-hardening cementitious composites (SHCC) including microscopic inertia. Materials 13(21), 4934 (2020)CrossRef Tamsen, E., Curosu, I., Mechtcherine, V., Balzani, D.: Computational micro-macro analysis of impact on strain-hardening cementitious composites (SHCC) including microscopic inertia. Materials 13(21), 4934 (2020)CrossRef
13.
go back to reference Häussler-Combe, U., Shehni, A., Chihadeh, A.: Finite element modeling of fiber reinforced cement composites using strong discontinuity approach with explicit representation of fibers. Int. J. Solids Struct. 200, 213–230 (2020)CrossRef Häussler-Combe, U., Shehni, A., Chihadeh, A.: Finite element modeling of fiber reinforced cement composites using strong discontinuity approach with explicit representation of fibers. Int. J. Solids Struct. 200, 213–230 (2020)CrossRef
14.
go back to reference Pandolfi, A., Ortiz, M.: An eigenerosion approach to brittle fracture. Int. J. Num. Methods Eng. 92(8), 694–714 (2012)CrossRefMATH Pandolfi, A., Ortiz, M.: An eigenerosion approach to brittle fracture. Int. J. Num. Methods Eng. 92(8), 694–714 (2012)CrossRefMATH
15.
go back to reference Qinami, A., Bryant, E.C., Sun, W., Kaliske, M.: Circumventing mesh bias by r-and h-adaptive techniques for variational eigenfracture. Int. J. Fracture 220(2), 129–142 (2019) Qinami, A., Bryant, E.C., Sun, W., Kaliske, M.: Circumventing mesh bias by r-and h-adaptive techniques for variational eigenfracture. Int. J. Fracture 220(2), 129–142 (2019)
16.
go back to reference Qinami, A., Pandolfi, A., Kaliske, M.: Variational eigenerosion for rate-dependent plasticity in concrete modeling at small strain. Int. J. Num. Methods Eng. 121(7), 1388–1409 (2020)CrossRef Qinami, A., Pandolfi, A., Kaliske, M.: Variational eigenerosion for rate-dependent plasticity in concrete modeling at small strain. Int. J. Num. Methods Eng. 121(7), 1388–1409 (2020)CrossRef
17.
go back to reference Böttcher, M., Fuchs, A., Leichsenring, F., Graf, W., Kaliske, M.: ELSA: An efficient, adaptive ensemble learning-based sampling approach. Adv. Eng. Softw. 154, 102974 (2021)CrossRef Böttcher, M., Fuchs, A., Leichsenring, F., Graf, W., Kaliske, M.: ELSA: An efficient, adaptive ensemble learning-based sampling approach. Adv. Eng. Softw. 154, 102974 (2021)CrossRef
18.
go back to reference Stöcker, J., Fuchs, A., Leichsenring, F., Kaliske, M.: A novel self-adversarial training scheme for enhanced robustness of inelastic constitutive descriptions by neural networks. Comput. Struct. 265, 106774 (2022)CrossRef Stöcker, J., Fuchs, A., Leichsenring, F., Kaliske, M.: A novel self-adversarial training scheme for enhanced robustness of inelastic constitutive descriptions by neural networks. Comput. Struct. 265, 106774 (2022)CrossRef
19.
go back to reference Fuchs, A., Curosu, I., Kaliske, M.: Numerical mesoscale analysis of textile reinforced concrete. Materials 13(18), 3944 (2020)CrossRef Fuchs, A., Curosu, I., Kaliske, M.: Numerical mesoscale analysis of textile reinforced concrete. Materials 13(18), 3944 (2020)CrossRef
20.
go back to reference Liebold, F., Maas, H.G.: Strategy for crack width measurement of multiple crack patterns in civil engineering material testing using a monocular image sequence analysis. PFG-J. Photogram. Remote Sens. Geoinform. Sci. 88(3), 219–238 (2020) Liebold, F., Maas, H.G.: Strategy for crack width measurement of multiple crack patterns in civil engineering material testing using a monocular image sequence analysis. PFG-J. Photogram. Remote Sens. Geoinform. Sci. 88(3), 219–238 (2020)
21.
go back to reference Liebold, F., A Heravi, A., Mosig, O., Curbach, M., Mechtcherine, V., Maas, H.G.: Crack propagation velocity determination by high-speed camera image sequence processing. Materials 13(19), 4415 (2020) Liebold, F., A Heravi, A., Mosig, O., Curbach, M., Mechtcherine, V., Maas, H.G.: Crack propagation velocity determination by high-speed camera image sequence processing. Materials 13(19), 4415 (2020)
22.
go back to reference Ilg, P., Hoehne, C., Guenther, E.: High-performance materials in infrastructure: a review of applied life cycle costing and its drivers-the case of fiber-reinforced composites. J. Cleaner Prod. 112, 926–945 (2016)CrossRef Ilg, P., Hoehne, C., Guenther, E.: High-performance materials in infrastructure: a review of applied life cycle costing and its drivers-the case of fiber-reinforced composites. J. Cleaner Prod. 112, 926–945 (2016)CrossRef
23.
go back to reference Scope, C., Vogel, M., Guenther, E.: Greener, cheaper, or more sustainable: reviewing sustainability assessments of maintenance strategies of concrete structures. Sustain. Prod. Consump. 26, 838–858 (2021)CrossRef Scope, C., Vogel, M., Guenther, E.: Greener, cheaper, or more sustainable: reviewing sustainability assessments of maintenance strategies of concrete structures. Sustain. Prod. Consump. 26, 838–858 (2021)CrossRef
Metadata
Title
Strain-Hardening Cement-based Composites (SHCC) for Impact Strengthening of Buildings: Recent Advances in the DFG Research Training Group 2250
Authors
Cesare Signorini
Viktor Mechtcherine
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-15805-6_29