Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Strategies for Hydrogen Storage in Porous Organic Polymers

Author : Weigang Lu

Published in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gas storage by using porous materials has been a hot research topic in recent years. In this review, we highlight advances in porous organic polymers for their hydrogen storage applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E.A. Rosa, T. Dietz, Human drivers of national greenhouse-gas emissions. Nat. Clim. Chang. 2(8), 581–586 (2012) E.A. Rosa, T. Dietz, Human drivers of national greenhouse-gas emissions. Nat. Clim. Chang. 2(8), 581–586 (2012)
2.
go back to reference J.T. Houghton, B.A. Callander, Climate Change 1992 (Cambridge University Press, Cambridge, 1992), pp. 5–13 J.T. Houghton, B.A. Callander, Climate Change 1992 (Cambridge University Press, Cambridge, 1992), pp. 5–13
3.
go back to reference N. Oreskes, The scientific consensus on climate change. Science 306(5702), 1686–1686 (2004) N. Oreskes, The scientific consensus on climate change. Science 306(5702), 1686–1686 (2004)
4.
go back to reference R.H. Moss et al., The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756 (2010) R.H. Moss et al., The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756 (2010)
5.
go back to reference F. Giorgi, L.O. Mearns, Approaches to the simulation of regional climate change: a review. Rev. Geophys. 29(2), 191–216 (1991) F. Giorgi, L.O. Mearns, Approaches to the simulation of regional climate change: a review. Rev. Geophys. 29(2), 191–216 (1991)
6.
go back to reference M. Meinshausen et al., Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458(7242), 1158–1162 (2009) M. Meinshausen et al., Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458(7242), 1158–1162 (2009)
7.
go back to reference A.M. Omer, Energy, environment and sustainable development. Renew. Sust. Energ. Rev. 12(9), 2265–2300 (2008) A.M. Omer, Energy, environment and sustainable development. Renew. Sust. Energ. Rev. 12(9), 2265–2300 (2008)
8.
go back to reference D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal-organic frameworks. Energy Environ. Sci. 1(2), 222–235 (2008) D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal-organic frameworks. Energy Environ. Sci. 1(2), 222–235 (2008)
9.
go back to reference I. Meyer, M. Leimbach, C.C. Jaeger, International passenger transport and climate change: a sector analysis in car demand and associated CO2 emissions from 2000 to 2050. Energy Policy 35(12), 6332–6345 (2007) I. Meyer, M. Leimbach, C.C. Jaeger, International passenger transport and climate change: a sector analysis in car demand and associated CO2 emissions from 2000 to 2050. Energy Policy 35(12), 6332–6345 (2007)
10.
go back to reference M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Hydrogen storage in nickel catalysts supported on activated carbon. Int. J. Hydrog. Energy 32(8), 1024–1032 (2007) M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Hydrogen storage in nickel catalysts supported on activated carbon. Int. J. Hydrog. Energy 32(8), 1024–1032 (2007)
11.
go back to reference S. Satyapal et al., The US Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 120(3), 246–256 (2007) S. Satyapal et al., The US Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 120(3), 246–256 (2007)
12.
go back to reference K.M. Thomas, Hydrogen adsorption and storage on porous materials. Catal. Today 120(3), 389–398 (2007) K.M. Thomas, Hydrogen adsorption and storage on porous materials. Catal. Today 120(3), 389–398 (2007)
13.
go back to reference M.G. Nijkamp et al., Hydrogen storage using physisorption–materials demands. Appl. Phys. A 72(5), 619–623 (2001) M.G. Nijkamp et al., Hydrogen storage using physisorption–materials demands. Appl. Phys. A 72(5), 619–623 (2001)
14.
go back to reference P. Jena, Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2(3), 206–211 (2011) P. Jena, Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2(3), 206–211 (2011)
15.
go back to reference A. Züttel, Materials for hydrogen storage. Mater. Today 6(9), 24–33 (2003) A. Züttel, Materials for hydrogen storage. Mater. Today 6(9), 24–33 (2003)
16.
go back to reference J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010) J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010)
17.
go back to reference T.A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 41(23), 7761–7779 (2012) T.A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 41(23), 7761–7779 (2012)
18.
go back to reference M. Bastos-Neto, C. Patzschke, M. Lange, J. Mollmer, A. Moller, S. Fichtner, C. Schrage, D. Lassig, J. Lincke, R. Staudt, H. Krautscheid, R. Glaser, Assessment of hydrogen storage by physisorption in porous materials. Energy Environ. Sci. 5(8), 8294–8303 (2012) M. Bastos-Neto, C. Patzschke, M. Lange, J. Mollmer, A. Moller, S. Fichtner, C. Schrage, D. Lassig, J. Lincke, R. Staudt, H. Krautscheid, R. Glaser, Assessment of hydrogen storage by physisorption in porous materials. Energy Environ. Sci. 5(8), 8294–8303 (2012)
19.
go back to reference L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009) L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009)
20.
go back to reference M.A. De la Casa-Lillo et al., Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 106(42), 10930–10934 (2002) M.A. De la Casa-Lillo et al., Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 106(42), 10930–10934 (2002)
21.
go back to reference J. Weitkamp, M. Fritz, S. Ernst, Zeolites as media for hydrogen storage. Int. J. Hydrog. Energy 20(12), 967–970 (1995) J. Weitkamp, M. Fritz, S. Ernst, Zeolites as media for hydrogen storage. Int. J. Hydrog. Energy 20(12), 967–970 (1995)
22.
go back to reference X.S. Zhao, Q. Ma, G.Q. Lu, VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuel 12(6), 1051–1054 (1998) X.S. Zhao, Q. Ma, G.Q. Lu, VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuel 12(6), 1051–1054 (1998)
23.
go back to reference C.D. Wood et al., Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater. 19(8), 2034–2048 (2007) C.D. Wood et al., Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater. 19(8), 2034–2048 (2007)
24.
go back to reference W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch, H.-C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43(16), 5561–5593 (2014) W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch, H.-C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43(16), 5561–5593 (2014)
25.
go back to reference P. Kaur, J.T. Hupp, S.T. Nguyen, Porous organic polymers in catalysis: opportunities and challenges. ACS Catal. 1(7), 819–835 (2011) P. Kaur, J.T. Hupp, S.T. Nguyen, Porous organic polymers in catalysis: opportunities and challenges. ACS Catal. 1(7), 819–835 (2011)
26.
go back to reference Y. Zhang, S.N. Riduan, Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 41(6), 2083–2094 (2012) Y. Zhang, S.N. Riduan, Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 41(6), 2083–2094 (2012)
27.
go back to reference A. Modak et al., Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun. 48(2), 248–250 (2012) A. Modak et al., Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun. 48(2), 248–250 (2012)
28.
go back to reference H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O’Keeffe, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks. Science 316(5822), 268–272 (2007) H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O’Keeffe, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks. Science 316(5822), 268–272 (2007)
29.
go back to reference A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005) A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)
30.
go back to reference P.J. Langley, J. Hulliger, Nanoporous and mesoporous organic structures: new openings for materials research. Chem. Soc. Rev. 28(5), 279–291 (1999) P.J. Langley, J. Hulliger, Nanoporous and mesoporous organic structures: new openings for materials research. Chem. Soc. Rev. 28(5), 279–291 (1999)
31.
go back to reference K.A. Cychosz, A.J. Matzger, Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir 26(22), 17198–17202 (2010) K.A. Cychosz, A.J. Matzger, Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir 26(22), 17198–17202 (2010)
32.
go back to reference P.M. Schoenecker, C.G. Carson, H. Jasuja, C.J.J. Flemming, K.S. Walton, Effect of water adsorption on retention of structure and surface area of metal–organic frameworks. Ind. Eng. Chem. Res. 51(18), 6513–6519 (2012) P.M. Schoenecker, C.G. Carson, H. Jasuja, C.J.J. Flemming, K.S. Walton, Effect of water adsorption on retention of structure and surface area of metal–organic frameworks. Ind. Eng. Chem. Res. 51(18), 6513–6519 (2012)
33.
go back to reference N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers if intrinsic microporosity (PIMs). Chem.-Eur. J. 11(9), 2610–2620 (2005) N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers if intrinsic microporosity (PIMs). Chem.-Eur. J. 11(9), 2610–2620 (2005)
34.
go back to reference P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2, 230–231 (2004) P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2, 230–231 (2004)
35.
go back to reference N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35(8), 675–683 (2006) N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35(8), 675–683 (2006)
36.
go back to reference J.X. Jiang, F.B. Su, A. Trewin, C.D. Wood, N.L. Campbell, H.J. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly (aryleneethynylene) networks. Angew. Chem. Int. Ed. 46(45), 8574–8578 (2007) J.X. Jiang, F.B. Su, A. Trewin, C.D. Wood, N.L. Campbell, H.J. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly (aryleneethynylene) networks. Angew. Chem. Int. Ed. 46(45), 8574–8578 (2007)
37.
go back to reference K. Gergova, N. Petrov, V. Minkova, A comparison of adsorption characteristics of various activated carbons. J. Chem. Technol. Biotechnol. 56(1), 77–82 (1993) K. Gergova, N. Petrov, V. Minkova, A comparison of adsorption characteristics of various activated carbons. J. Chem. Technol. Biotechnol. 56(1), 77–82 (1993)
38.
go back to reference J.X. Jiang, F. Su, A. Trewin, C.D. Wood, H. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 130(24), 7710–7720 (2008) J.X. Jiang, F. Su, A. Trewin, C.D. Wood, H. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 130(24), 7710–7720 (2008)
39.
go back to reference A.I. Cooper, Conjugated microporous polymers. Adv. Mater. 21(12), 1291–1295 (2009) A.I. Cooper, Conjugated microporous polymers. Adv. Mater. 21(12), 1291–1295 (2009)
40.
go back to reference T. Ben, H. Ren, S.Q. Ma, D.P. Cao, J.H. Lan, X.F. Jing, W.C. Wang, J. Xu, F. Deng, J.M. Simmons, S.L. Qiu, G.S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009) T. Ben, H. Ren, S.Q. Ma, D.P. Cao, J.H. Lan, X.F. Jing, W.C. Wang, J. Xu, F. Deng, J.M. Simmons, S.L. Qiu, G.S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009)
41.
go back to reference P. Bénard, R. Chahine, Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 56(10), 803–808 (2007) P. Bénard, R. Chahine, Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 56(10), 803–808 (2007)
42.
go back to reference P. Bénard, R. Chahine, Modeling of adsorption storage of hydrogen on activated carbons. Int. J. Hydrog. Energy 26(8), 849–855 (2001) P. Bénard, R. Chahine, Modeling of adsorption storage of hydrogen on activated carbons. Int. J. Hydrog. Energy 26(8), 849–855 (2001)
43.
go back to reference M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112(2), 782–835 (2012) M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112(2), 782–835 (2012)
44.
go back to reference M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014) M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014)
45.
go back to reference E. Poirier, R. Chahine, T.K. Bose, Hydrogen adsorption in carbon nanostructures. Int. J. Hydrog. Energy 26(8), 831–835 (2001) E. Poirier, R. Chahine, T.K. Bose, Hydrogen adsorption in carbon nanostructures. Int. J. Hydrog. Energy 26(8), 831–835 (2001)
46.
go back to reference I. Cabria, M.J. López, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007) I. Cabria, M.J. López, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007)
47.
go back to reference Y. Gogotsi et al., Importance of pore size in high-pressure hydrogen storage by porous carbons. Int. J. Hydrog. Energy 34(15), 6314–6319 (2009) Y. Gogotsi et al., Importance of pore size in high-pressure hydrogen storage by porous carbons. Int. J. Hydrog. Energy 34(15), 6314–6319 (2009)
48.
go back to reference I. Cabria, M.J. López, J.A. Alonso, Simulation of the hydrogen storage in nanoporous carbons with different pore shapes. Int. J. Hydrog. Energy 36(17), 10748–10759 (2011) I. Cabria, M.J. López, J.A. Alonso, Simulation of the hydrogen storage in nanoporous carbons with different pore shapes. Int. J. Hydrog. Energy 36(17), 10748–10759 (2011)
49.
go back to reference Z. Geng, C. Zhang, D. Wang, X. Zhou, M. Cai, Pore size effects of nanoporous carbons with ultra-high surface area on high-pressure hydrogen storage. J. Energy Chem. 24(1), 1–8 (2015) Z. Geng, C. Zhang, D. Wang, X. Zhou, M. Cai, Pore size effects of nanoporous carbons with ultra-high surface area on high-pressure hydrogen storage. J. Energy Chem. 24(1), 1–8 (2015)
50.
go back to reference F.D. Minuto et al., Liquid-like hydrogen in the micropores of commercial activated carbons. Int. J. Hydrog. Energy 40(42), 14562–14572 (2015) F.D. Minuto et al., Liquid-like hydrogen in the micropores of commercial activated carbons. Int. J. Hydrog. Energy 40(42), 14562–14572 (2015)
51.
go back to reference R. Ströbel et al., Hydrogen adsorption on carbon materials. J. Power Sources 84(2), 221–224 (1999) R. Ströbel et al., Hydrogen adsorption on carbon materials. J. Power Sources 84(2), 221–224 (1999)
52.
go back to reference M. Rzepka, P. Lamp, M.A. de la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 102(52), 10894–10898 (1998) M. Rzepka, P. Lamp, M.A. de la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 102(52), 10894–10898 (1998)
53.
go back to reference B. Panella, M. Hirscher, Hydrogen physisorption in metal–organic porous crystals. Adv. Mater. 17(5), 538–541 (2005) B. Panella, M. Hirscher, Hydrogen physisorption in metal–organic porous crystals. Adv. Mater. 17(5), 538–541 (2005)
54.
go back to reference N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003)
55.
go back to reference J.L.C. Rowsell, O.M. Yaghi, Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005) J.L.C. Rowsell, O.M. Yaghi, Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005)
56.
go back to reference J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal–organic frameworks. J. Am. Chem. Soc. 126(18), 5666–5667 (2004) J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal–organic frameworks. J. Am. Chem. Soc. 126(18), 5666–5667 (2004)
57.
go back to reference B. Kesanli, Y. Cui, M.R. Smith, E.W. Bittner, B.C. Bockrath, W. Lin, Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 44(1), 72–75 (2005) B. Kesanli, Y. Cui, M.R. Smith, E.W. Bittner, B.C. Bockrath, W. Lin, Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 44(1), 72–75 (2005)
58.
go back to reference L. Huang et al., Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 58(2), 105–114 (2003) L. Huang et al., Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 58(2), 105–114 (2003)
59.
go back to reference B. Chen et al., Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. Inorg. Chem. 45(15), 5718–5720 (2006) B. Chen et al., Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. Inorg. Chem. 45(15), 5718–5720 (2006)
60.
go back to reference A. Züttel, Hydrogen storage methods. Naturwissenschaften 91(4), 157–172 (2004) A. Züttel, Hydrogen storage methods. Naturwissenschaften 91(4), 157–172 (2004)
61.
go back to reference F. Rouquerol, J. Rouquerol, K.S.W. Sing, G. Maurin, P. Llewellyn, 1 – Introduction, in Adsorption by Powders and Porous Solids, ed. by F.R.R.S.W.S.L. Maurin, 2nd edn. (Academic, Oxford, 2014), pp. 1–24 F. Rouquerol, J. Rouquerol, K.S.W. Sing, G. Maurin, P. Llewellyn, 1 – Introduction, in Adsorption by Powders and Porous Solids, ed. by F.R.R.S.W.S.L. Maurin, 2nd edn. (Academic, Oxford, 2014), pp. 1–24
62.
go back to reference N.T. Stetson, S. McWhorter, C.C. Ahn, 1 – Introduction to hydrogen storage, in Compendium of Hydrogen Energy, ed. by R.B.G.B.N. Veziroğlu (Woodhead Publishing, Cambridge, 2015), pp. 3–25 N.T. Stetson, S. McWhorter, C.C. Ahn, 1 – Introduction to hydrogen storage, in Compendium of Hydrogen Energy, ed. by R.B.G.B.N. Veziroğlu (Woodhead Publishing, Cambridge, 2015), pp. 3–25
63.
go back to reference O.K. Farha, A. Özgür Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2(11), 944–948 (2010) O.K. Farha, A. Özgür Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2(11), 944–948 (2010)
64.
go back to reference H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329(5990), 424–428 (2010) H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329(5990), 424–428 (2010)
65.
go back to reference J. Germain, J.M.J. Fréchet, F. Svec, Nanoporous polymers for hydrogen storage. Small 5.10, 1098–1111 (2009) J. Germain, J.M.J. Fréchet, F. Svec, Nanoporous polymers for hydrogen storage. Small 5.10, 1098–1111 (2009)
66.
go back to reference Y.-S. Bae, R.Q. Snurr, Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Microporous Mesoporous Mater. 132(1–2), 300–303 (2010) Y.-S. Bae, R.Q. Snurr, Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Microporous Mesoporous Mater. 132(1–2), 300–303 (2010)
67.
go back to reference S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage. Langmuir 22(4), 1688–1700 (2006) S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage. Langmuir 22(4), 1688–1700 (2006)
68.
go back to reference O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423(6941), 705–714 (2003) O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423(6941), 705–714 (2003)
69.
go back to reference N.W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O.M. Yaghi, Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38(3), 176–182 (2005) N.W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O.M. Yaghi, Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38(3), 176–182 (2005)
70.
go back to reference M. O’Keeffe, Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38(5), 1215–1217 (2009) M. O’Keeffe, Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38(5), 1215–1217 (2009)
71.
go back to reference D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112(7), 3959–4015 (2012) D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112(7), 3959–4015 (2012)
72.
go back to reference R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012) R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)
73.
go back to reference H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012) H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012)
74.
go back to reference O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012)
75.
go back to reference N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2011) N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2011)
76.
go back to reference W. Lu, W.M. Verdegaal, J. Yu, P.B. Balbuena, H.-K. Jeong, H.-C. Zhou, Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ. Sci. 6(12), 3559–3564 (2013) W. Lu, W.M. Verdegaal, J. Yu, P.B. Balbuena, H.-K. Jeong, H.-C. Zhou, Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ. Sci. 6(12), 3559–3564 (2013)
77.
go back to reference W. Lu, J.P. Sculley, D. Yuan, R. Krishna, H.-C. Zhou, Carbon dioxide capture from air using amine-grafted porous polymer networks. J. Phys. Chem. C 117(8), 4057–4061 (2013) W. Lu, J.P. Sculley, D. Yuan, R. Krishna, H.-C. Zhou, Carbon dioxide capture from air using amine-grafted porous polymer networks. J. Phys. Chem. C 117(8), 4057–4061 (2013)
78.
go back to reference W. Lu, J.P. Sculley, D. Yuan, R. Krishna, Z. Wei, H.-C. Zhou, Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem. Int. Ed. 51(30), 7480–7484 (2012) W. Lu, J.P. Sculley, D. Yuan, R. Krishna, Z. Wei, H.-C. Zhou, Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem. Int. Ed. 51(30), 7480–7484 (2012)
79.
go back to reference W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H.-C. Zhou, Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc. 133(45), 18126–18129 (2011) W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H.-C. Zhou, Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc. 133(45), 18126–18129 (2011)
80.
go back to reference W. Lu, M. Bosch, D. Yuan, H.-C. Zhou, Cost-effective synthesis of amine-tethered porous materials for carbon capture. ChemSusChem 8(3), 433–438 (2015) W. Lu, M. Bosch, D. Yuan, H.-C. Zhou, Cost-effective synthesis of amine-tethered porous materials for carbon capture. ChemSusChem 8(3), 433–438 (2015)
81.
go back to reference W.-C. Xu et al., Investigation of hydrogen storage capacity of various carbon materials. Int. J. Hydrog. Energy 32(13), 2504–2512 (2007) W.-C. Xu et al., Investigation of hydrogen storage capacity of various carbon materials. Int. J. Hydrog. Energy 32(13), 2504–2512 (2007)
82.
go back to reference T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009) T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009)
83.
go back to reference A. Trewin, A.I. Cooper, Porous organic polymers: distinction from disorder? Angew. Chem. Int. Ed. 49(9), 1533–1535 (2010) A. Trewin, A.I. Cooper, Porous organic polymers: distinction from disorder? Angew. Chem. Int. Ed. 49(9), 1533–1535 (2010)
84.
go back to reference D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011) D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011)
85.
go back to reference B. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291(5506), 1021–1023 (2001) B. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291(5506), 1021–1023 (2001)
86.
go back to reference J.K. Schnobrich, K. Koh, K.N. Sura, A.J. Matzger, A framework for predicting surface areas in microporous coordination polymers. Langmuir 26(8), 5808–5814 (2010) J.K. Schnobrich, K. Koh, K.N. Sura, A.J. Matzger, A framework for predicting surface areas in microporous coordination polymers. Langmuir 26(8), 5808–5814 (2010)
87.
go back to reference W. Lu, D. Yuan, D. Zhao, C.I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blümel, R. Krishna, Z. Li, H.-C. Zhou, Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem. Mater. 22(21), 5964–5972 (2010) W. Lu, D. Yuan, D. Zhao, C.I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blümel, R. Krishna, Z. Li, H.-C. Zhou, Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem. Mater. 22(21), 5964–5972 (2010)
88.
go back to reference J. Schmidt, M. Werner, A. Thomas, Conjugated microporous polymer networks via Yamamoto polymerization. Macromolecules 42(13), 4426–4429 (2009) J. Schmidt, M. Werner, A. Thomas, Conjugated microporous polymer networks via Yamamoto polymerization. Macromolecules 42(13), 4426–4429 (2009)
89.
go back to reference J.-F. Lutz, Z. Zarafshani, Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug Deliv. Rev. 60(9), 958–970 (2008) J.-F. Lutz, Z. Zarafshani, Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug Deliv. Rev. 60(9), 958–970 (2008)
90.
go back to reference T. Muller, S. Bräse, Click chemistry finds its way into covalent porous organic materials. Angew. Chem. Int. Ed. 50(50), 11844–11845 (2011) T. Muller, S. Bräse, Click chemistry finds its way into covalent porous organic materials. Angew. Chem. Int. Ed. 50(50), 11844–11845 (2011)
91.
go back to reference W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, H.-C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014) W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, H.-C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014)
92.
go back to reference A. Blomqvist, C.M. Araújo, P. Srepusharawoot, R. Ahuja, Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. Proc. Natl. Acad. Sci. 104(51), 20173–20176 (2007) A. Blomqvist, C.M. Araújo, P. Srepusharawoot, R. Ahuja, Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. Proc. Natl. Acad. Sci. 104(51), 20173–20176 (2007)
93.
go back to reference W.-Q. Deng, X. Xu, W.A. Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. Phys. Rev. Lett. 92(16), 166103 (2004) W.-Q. Deng, X. Xu, W.A. Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. Phys. Rev. Lett. 92(16), 166103 (2004)
94.
go back to reference J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “top 10” revisited. Green Chem. 12(4), 539–554 (2010) J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “top 10” revisited. Green Chem. 12(4), 539–554 (2010)
95.
go back to reference S.S. Han, W.A. Goddard, Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129(27), 8422–8423 (2007) S.S. Han, W.A. Goddard, Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129(27), 8422–8423 (2007)
96.
go back to reference K.L. Mulfort et al., Framework reduction and alkali-metal doping of a triply catenating metal – organic framework enhances and then diminishes H2 uptake. Langmuir 25.1, 503–508 (2008) K.L. Mulfort et al., Framework reduction and alkali-metal doping of a triply catenating metal – organic framework enhances and then diminishes H2 uptake. Langmuir 25.1, 503–508 (2008)
97.
go back to reference K.L. Mulfort, J.T. Hupp, Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129(31), 9604–9605 (2007) K.L. Mulfort, J.T. Hupp, Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129(31), 9604–9605 (2007)
98.
go back to reference D. Himsl, D. Wallacher, M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. Angew. Chem. Int. Ed. 48(25), 4639–4642 (2009) D. Himsl, D. Wallacher, M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. Angew. Chem. Int. Ed. 48(25), 4639–4642 (2009)
99.
go back to reference A. Mavrandonakis, E. Klontzas, E. Tylianakis, G.E. Froudakis, Enhancement of hydrogen adsorption in metal–organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study. J. Am. Chem. Soc. 131(37), 13410–13414 (2009) A. Mavrandonakis, E. Klontzas, E. Tylianakis, G.E. Froudakis, Enhancement of hydrogen adsorption in metal–organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study. J. Am. Chem. Soc. 131(37), 13410–13414 (2009)
100.
go back to reference A. Mavrandonakis, E. Tylianakis, A.K. Stubos, G.E. Froudakis, Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. J. Phys. Chem. C 112(18), 7290–7294 (2008) A. Mavrandonakis, E. Tylianakis, A.K. Stubos, G.E. Froudakis, Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. J. Phys. Chem. C 112(18), 7290–7294 (2008)
101.
go back to reference A. Li, R.-F. Lu, Y. Wang, X. Wang, K.-L. Han, W.-Q. Deng, Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew. Chem. Int. Ed. 49(19), 3330–3333 (2010) A. Li, R.-F. Lu, Y. Wang, X. Wang, K.-L. Han, W.-Q. Deng, Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew. Chem. Int. Ed. 49(19), 3330–3333 (2010)
102.
go back to reference G. Kim et al., Crossover between multipole Coulomb and Kubas interactions in hydrogen adsorption on metal-graphene complexes. Phys. Rev. B 79.15, 155437 (2009) G. Kim et al., Crossover between multipole Coulomb and Kubas interactions in hydrogen adsorption on metal-graphene complexes. Phys. Rev. B 79.15, 155437 (2009)
Metadata
Title
Strategies for Hydrogen Storage in Porous Organic Polymers
Author
Weigang Lu
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53514-1_7

Premium Partners