Skip to main content
Top

2020 | OriginalPaper | Chapter

Stress Characterization of Bore-Chilled Sand Cast Aluminum Engine Blocks in As-Cast and T7 Condition with Application of Neutron Diffraction

Authors : J. Stroh, D. Sediako, G. Byczynski, A. Lombardi, A. Paradowska

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In an effort to improve vehicle fuel efficiency, aluminum (Al) alloys have been gaining upward momentum for use in automotive powertrain components such as engine blocks. Al alloys are lightweight and have good mechanical strength at engine operating temperatures; making them a suitable choice for engine block production. However, during the manufacturing process factors such as inhomogeneous cooling rates and/or coefficients thermal expansion mismatches in multi-material castings can lead to the development of residual stress. This is of particular concern for the relatively thin cylinder bridges, which are exposed to large thermo-mechanical loading during engine operation. The casting process used at Nemak for I6 engine block production does not utilise cast-in liners and therefore may be also be suitable for future mass-produced linerless blocks. This paper utilizes neutron diffraction and SEM/EDS to determine how the elimination of cast-in liners as well as a T7 heat treatment effects the magnitude of residual stress in cast Al (A319 type alloy) engine blocks. It was observed that the T7 treatment resulted in a significant reduction of the strain/stress in the Al cylinder bridge (up to ~50% of the radial stress at the top of the bridge). In addition, the absence of the cast-in Fe liners allowed for unrestricted natural contraction of the Al bridge; leading to a combination of low tension and moderate compression as compared to the typically high tensile stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Davis & Associates. and ASM International. Handbook Committee.. ASM International, 1993. J. Davis & Associates. and ASM International. Handbook Committee.. ASM International, 1993.
2.
go back to reference J. Robinson and D. Tanner, “The Magnitude of Heat Treatment Induced Residual Stresses and the Thermal Stress Relief of Aluminium Alloys,” Mater. Sci. Forum, vol. 404–407, pp. 355–360, 2009. J. Robinson and D. Tanner, “The Magnitude of Heat Treatment Induced Residual Stresses and the Thermal Stress Relief of Aluminium Alloys,” Mater. Sci. Forum, vol. 404–407, pp. 355–360, 2009.
3.
go back to reference A. Lombardi, C. Ravindran, D. Sediako, and R. MacKay, “Determining the Mechanism of In-Service Cylinder Distortion in Aluminum Engine Blocks with Cast-In Gray Iron Liners,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 45, no. 13, pp. 6291–6303, 2014. A. Lombardi, C. Ravindran, D. Sediako, and R. MacKay, “Determining the Mechanism of In-Service Cylinder Distortion in Aluminum Engine Blocks with Cast-In Gray Iron Liners,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 45, no. 13, pp. 6291–6303, 2014.
4.
go back to reference B. Chen et al., “In situ neutron diffraction measurement of residual stress relaxation in a welded steel pipe during heat treatment,” Mater. Sci. Eng. A, 2014. B. Chen et al., “In situ neutron diffraction measurement of residual stress relaxation in a welded steel pipe during heat treatment,” Mater. Sci. Eng. A, 2014.
5.
go back to reference D. Lados, D. Apelian, and L. Wang, “Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: Mechanisms and effects on static and dynamic properties,” Mater. Sci. Eng. A, vol. 527, no. 13–14, pp. 3159–3165, 2010. D. Lados, D. Apelian, and L. Wang, “Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: Mechanisms and effects on static and dynamic properties,” Mater. Sci. Eng. A, vol. 527, no. 13–14, pp. 3159–3165, 2010.
6.
go back to reference J. Rolph, A. Evans, A. Paradowska, M. Hofmann, M. Hardy, and M. Preuss, “Stress relaxation through ageing heat treatment - a comparison between in situ and ex situ neutron diffraction techniques,” Comptes Rendus Phys., vol. 13, no. 3, pp. 307–315, 2012. J. Rolph, A. Evans, A. Paradowska, M. Hofmann, M. Hardy, and M. Preuss, “Stress relaxation through ageing heat treatment - a comparison between in situ and ex situ neutron diffraction techniques,” Comptes Rendus Phys., vol. 13, no. 3, pp. 307–315, 2012.
7.
go back to reference L. Godlewski, X. Su, T. Pollock, and J. Allison, “The effect of aging on the relaxation of residual stress in cast aluminum,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 10, pp. 4809–4818, 2013. L. Godlewski, X. Su, T. Pollock, and J. Allison, “The effect of aging on the relaxation of residual stress in cast aluminum,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 10, pp. 4809–4818, 2013.
8.
go back to reference Lombardi A, Sediako D, Machin A, Ravindran C and MacKay R (2017) Effect of solution heat treatment on residual stress in Al alloy engine blocks using neutron diffraction, Mater. Sci. Eng. A, 697(May): 238–247. Lombardi A, Sediako D, Machin A, Ravindran C and MacKay R (2017) Effect of solution heat treatment on residual stress in Al alloy engine blocks using neutron diffraction, Mater. Sci. Eng. A, 697(May): 238–247.
9.
go back to reference Lombardi A, D’Elia F, Ravindran C, Sediako D, Murty B and MacKay R (2012) Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity, Metall. Mater. Trans. A, 43(13): 5258–5270. Lombardi A, D’Elia F, Ravindran C, Sediako D, Murty B and MacKay R (2012) Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity, Metall. Mater. Trans. A, 43(13): 5258–5270.
10.
go back to reference Byczynski G and Mackay R (2019) The nemak cosworth casting process latest generation, Shape Casting 7th International Symposium, Springer International Publishing: 179–185. Byczynski G and Mackay R (2019) The nemak cosworth casting process latest generation, Shape Casting 7th International Symposium, Springer International Publishing: 179–185.
11.
go back to reference Stroh J, Piche A, Sediako D, Lombardi A, and Byczynski G (2019) The Effects of Solidification Cooling Rates on the Mechanical Properties of an A319 Inline-6 Engine Block, The Minerals, Metals & Materials Society (TMS), vol. Light Metals 2019: 505–512. Stroh J, Piche A, Sediako D, Lombardi A, and Byczynski G (2019) The Effects of Solidification Cooling Rates on the Mechanical Properties of an A319 Inline-6 Engine Block, The Minerals, Metals & Materials Society (TMS), vol. Light Metals 2019: 505–512.
12.
go back to reference Sediako D, D’Elia F, Lombardi A, Machin A, Ravindran C, Hubbard C and Mackay R (2011) Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction, SAE Int. J. Mater. Manuf., 4(1): 138–151. Sediako D, D’Elia F, Lombardi A, Machin A, Ravindran C, Hubbard C and Mackay R (2011) Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction, SAE Int. J. Mater. Manuf., 4(1): 138–151.
Metadata
Title
Stress Characterization of Bore-Chilled Sand Cast Aluminum Engine Blocks in As-Cast and T7 Condition with Application of Neutron Diffraction
Authors
J. Stroh
D. Sediako
G. Byczynski
A. Lombardi
A. Paradowska
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_21

Premium Partners