Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2015 | OriginalPaper | Chapter

4. Stress Concentration, Fracture and Damage in Auxetic Materials

Author : Teik-Cheng Lim

Published in: Auxetic Materials and Structures

Publisher: Springer Singapore

Abstract

This chapter considers the damage properties of auxetic solids. In the study of stress concentration factors in auxetic solids and plates arising from cavities and rigid inclusions, most cases exhibit minimum stress concentration when the solids possess negative Poisson’s ratio. In discussing the three modes of fracture in auxetic solids in dimensionless terms, most plots exhibit a clear demarcation between auxetic and conventional regions. The consideration of damage criteria based on thermodynamic analysis by Lemaitre and Baptiste (NSF workshop on mechanics of damage and fracture, 1982) shows that as an isotropic solid changes from conventional to auxetic, the damage criterion shifts from being highly dependent on the von Mises equivalent stress to being highly dependent on the hydrostatic stress. Progress on fatigue failure of auxetic materials is then given.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Alderson A, Evans KE (1995) Microstructural modelling of auxetic microporous polymers. J Mater Sci 30(13):3319–3332 CrossRef Alderson A, Evans KE (1995) Microstructural modelling of auxetic microporous polymers. J Mater Sci 30(13):3319–3332 CrossRef
go back to reference Alderson A, Evans KE (1997) Modelling concurrent deformation mechanisms in auxetic microporous polymers. J Mater Sci 32(11):2797–2809 CrossRef Alderson A, Evans KE (1997) Modelling concurrent deformation mechanisms in auxetic microporous polymers. J Mater Sci 32(11):2797–2809 CrossRef
go back to reference Alderson A, Evans KE (2001) Rotation and dilation deformation mechanisms for auxetic behaviour in the α-cristobalite tetrahedral framework structure. Phys Chem Miner 28(10):711–718 CrossRef Alderson A, Evans KE (2001) Rotation and dilation deformation mechanisms for auxetic behaviour in the α-cristobalite tetrahedral framework structure. Phys Chem Miner 28(10):711–718 CrossRef
go back to reference Bezazi A, Scarpa F (2007) Mechanical behavior of conventional and negative Poisson’s ratio thermoplastic foams under compressive cyclic loading. Int J Fatigue 29(5):922–930 CrossRef Bezazi A, Scarpa F (2007) Mechanical behavior of conventional and negative Poisson’s ratio thermoplastic foams under compressive cyclic loading. Int J Fatigue 29(5):922–930 CrossRef
go back to reference Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of antitetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004 CrossRef Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of antitetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004 CrossRef
go back to reference Chiang CR (2008) Stress concentration factors of a general triaxial ellipsoidal cavity. Fatigue Fract Eng Mater Struct 31(12):1039–1046 CrossRef Chiang CR (2008) Stress concentration factors of a general triaxial ellipsoidal cavity. Fatigue Fract Eng Mater Struct 31(12):1039–1046 CrossRef
go back to reference Chiang CR (2011) A design equation for the stress concentration factor of an oblate ellipsoidal cavity. J Strain Anal Eng Des 46(2):87–94 Chiang CR (2011) A design equation for the stress concentration factor of an oblate ellipsoidal cavity. J Strain Anal Eng Des 46(2):87–94
go back to reference Cosserat E, Cosserat F (1909) Théorie des Corps deformables. Hermann et Fils, Paris Cosserat E, Cosserat F (1909) Théorie des Corps deformables. Hermann et Fils, Paris
go back to reference Gaspar N, Smith CW, Alderson A, Grima JN, Evans KE (2011) A generalised three-dimensional tethered-nodule model for auxetic materials. J Mater Sci 46(2):372–384 CrossRef Gaspar N, Smith CW, Alderson A, Grima JN, Evans KE (2011) A generalised three-dimensional tethered-nodule model for auxetic materials. J Mater Sci 46(2):372–384 CrossRef
go back to reference Goland M (1943) The Influence of the shape and rigidity of an elastic inclusion on the transverse flexure of thin plates. ASME J Appl Mech 10:A69–A75 MATHMathSciNet Goland M (1943) The Influence of the shape and rigidity of an elastic inclusion on the transverse flexure of thin plates. ASME J Appl Mech 10:A69–A75 MATHMathSciNet
go back to reference Goodier JN (1936) The influence of circular and elliptical openings on the transverse flexure of elastic plate. Philos Mag 22(4):69–80 CrossRefMATH Goodier JN (1936) The influence of circular and elliptical openings on the transverse flexure of elastic plate. Philos Mag 22(4):69–80 CrossRefMATH
go back to reference Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. Trans ASME 55:39–44 Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. Trans ASME 55:39–44
go back to reference Grima JN, Williams JJ, Evans KE (2005) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 32:4065–4067 CrossRef Grima JN, Williams JJ, Evans KE (2005) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 32:4065–4067 CrossRef
go back to reference Grima JN, Zammit V, Gatt R, Alderson A, Evans KE (2007) Auxetic behaviour from rotating semi-rigid units. Phys Status Solidi B 244(3):866–882 CrossRef Grima JN, Zammit V, Gatt R, Alderson A, Evans KE (2007) Auxetic behaviour from rotating semi-rigid units. Phys Status Solidi B 244(3):866–882 CrossRef
go back to reference He CB, Liu PW, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31(9):3145–3147 CrossRef He CB, Liu PW, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31(9):3145–3147 CrossRef
go back to reference He CB, Liu PW, McMullan PJ, Griffin AC (2005) Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Phys Status Solidi B 242(3):576–584 CrossRef He CB, Liu PW, McMullan PJ, Griffin AC (2005) Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Phys Status Solidi B 242(3):576–584 CrossRef
go back to reference Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364 Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364
go back to reference Lakes R (1987a) Foam structures with negative Poisson’s ratio. Science 235(4792):1038–1040 CrossRef Lakes R (1987a) Foam structures with negative Poisson’s ratio. Science 235(4792):1038–1040 CrossRef
go back to reference Lakes R (1987b) Negative Poisson’s ratio materials. Science 238(4826):551 CrossRef Lakes R (1987b) Negative Poisson’s ratio materials. Science 238(4826):551 CrossRef
go back to reference Lakes RS (1993) Design considerations for negative Poisson’s ratio materials. ASME J Mech Des 115:696–700 CrossRef Lakes RS (1993) Design considerations for negative Poisson’s ratio materials. ASME J Mech Des 115:696–700 CrossRef
go back to reference Lemaitre J, Baptiste D (1982) On damage criteria. Proceedings of NSF workshop on mechanics of damage and fracture, Atlanta, Georgia Lemaitre J, Baptiste D (1982) On damage criteria. Proceedings of NSF workshop on mechanics of damage and fracture, Atlanta, Georgia
go back to reference Lim TC (2013) Stress concentration factors in auxetic rods and plates. Appl Mech Mater 394:134–139 CrossRef Lim TC (2013) Stress concentration factors in auxetic rods and plates. Appl Mech Mater 394:134–139 CrossRef
go back to reference Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1(3):265–271 CrossRef Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1(3):265–271 CrossRef
go back to reference Neuber H (1958) Theory of Notch Stresses. Springer, Berlin Neuber H (1958) Theory of Notch Stresses. Springer, Berlin
go back to reference Sadowsky MA, Sternberg E (1947) Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity. ASME J Appl Mech 14:191–201 MathSciNet Sadowsky MA, Sternberg E (1947) Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity. ASME J Appl Mech 14:191–201 MathSciNet
go back to reference Sadowsky MA, Sternberg E (1949) Stress concentration around a triaxial ellipsoidal cavity. ASME J Appl Mech 16:149–157 MATHMathSciNet Sadowsky MA, Sternberg E (1949) Stress concentration around a triaxial ellipsoidal cavity. ASME J Appl Mech 16:149–157 MATHMathSciNet
go back to reference Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356 CrossRef Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356 CrossRef
go back to reference Spadoni A, Ruzzene M (2012) Elasto-static micro polar behavior of a chiral auxetic lattice. J Mech Phys Solids 60(1):156–171 CrossRef Spadoni A, Ruzzene M (2012) Elasto-static micro polar behavior of a chiral auxetic lattice. J Mech Phys Solids 60(1):156–171 CrossRef
go back to reference Taylor M, Francesconi L, Gerendas M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370 CrossRef Taylor M, Francesconi L, Gerendas M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370 CrossRef
go back to reference Wojciechowski KW (1987) Constant thermodynamic tension Monte-Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61(5):1247–1258 CrossRef Wojciechowski KW (1987) Constant thermodynamic tension Monte-Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61(5):1247–1258 CrossRef
go back to reference Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137(1&2):60–64 CrossRef Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137(1&2):60–64 CrossRef
Metadata
Title
Stress Concentration, Fracture and Damage in Auxetic Materials
Author
Teik-Cheng Lim
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-275-3_4

Premium Partners