Skip to main content
Top

2024 | OriginalPaper | Chapter

Stress Detection Using Novel Time–Frequency Decomposition: Progressive Fourier Transform

Authors : Hagar Hussein, Ashhadul Islam, Samir Brahim Belhaouari

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stress is a natural reaction to challenges encountered in everyday life. Chronic stress, which lasts for a long time, can negatively influence mental and physical health. Therefore, early detection and assessment of stress are crucial to reducing the risk of harm to an individual’s well-being. Electroencephalograph (EEG) brain signals can be used to assess human stress levels. This research aims to investigate how EEG signals can detect stress using deep learning based on a new feature extraction technique. We proposed new feature decomposition approaches based on the progressive Fourier transform and the coordination of multiple brain areas working simultaneously. Convolutional neural networks (CNNs) were employed in our study to extract and classify stress features captured from the image representations of EEG signals. The performance of the proposed method was evaluated on publicly available EEG dataset. Our experiment results demonstrated that our proposed method outperformed previous studies in detecting different mental states. The progressive Fourier transformation yielded the highest accuracy of 97.9% in classifying three mental states (Concentrating/Neutral/Relaxed) when conducting tenfolds cross validation using the AlexNet model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Salleh, M.R.: Life event, stress and illness. Malays. J. Med. Sci. 15, 9–18 (2008) Salleh, M.R.: Life event, stress and illness. Malays. J. Med. Sci. 15, 9–18 (2008)
2.
go back to reference Dhabhar, F.S.: The short-term stress response: Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front. Neuroendocrinol. 49, 175–192 (2018)CrossRef Dhabhar, F.S.: The short-term stress response: Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front. Neuroendocrinol. 49, 175–192 (2018)CrossRef
3.
go back to reference Zhang, X., et al.: Stress-induced functional alterations in amygdala: implications for neuropsychiatric diseases. Front. Neurosci. 12, 367 (2018)CrossRef Zhang, X., et al.: Stress-induced functional alterations in amygdala: implications for neuropsychiatric diseases. Front. Neurosci. 12, 367 (2018)CrossRef
4.
go back to reference Smoller, J.W.: The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology 41, 297–319 (2016)CrossRef Smoller, J.W.: The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology 41, 297–319 (2016)CrossRef
5.
go back to reference Bandelow, B., Michaelis, S.: Epidemiology of anxiety disorders in the 21st century. Dial. Clin. Neurosci. 17, 327–335 (2015)CrossRef Bandelow, B., Michaelis, S.: Epidemiology of anxiety disorders in the 21st century. Dial. Clin. Neurosci. 17, 327–335 (2015)CrossRef
8.
go back to reference Yehya, A., Alabdulla, M., Kader, N.: Mental health during the first-wave of the COVID-19 pandemic: examining perceived stress among Qatar University students. Open J. Depr. 10, 1131 (2021) Yehya, A., Alabdulla, M., Kader, N.: Mental health during the first-wave of the COVID-19 pandemic: examining perceived stress among Qatar University students. Open J. Depr. 10, 1131 (2021)
10.
go back to reference Frommberger, U., Angenendt, J., Berger, M.: Post-traumatic stress disorder: a diagnostic and therapeutic challenge. Dtsch. Arztebl. Int. 111, 59–65 (2014) Frommberger, U., Angenendt, J., Berger, M.: Post-traumatic stress disorder: a diagnostic and therapeutic challenge. Dtsch. Arztebl. Int. 111, 59–65 (2014)
11.
go back to reference Schneiders, A.G., et al.: The ability of clinical tests to diagnose stress fractures: a systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 42, 760–771 (2012)CrossRef Schneiders, A.G., et al.: The ability of clinical tests to diagnose stress fractures: a systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 42, 760–771 (2012)CrossRef
12.
go back to reference Arsalan, A., Majid, M., Butt, A.R., Anwar, S.M.: Classification of perceived mental stress using a commercially available EEG Headband. IEEE J. Biomed. Health Inform. 23, 2257–2264 (2019)CrossRef Arsalan, A., Majid, M., Butt, A.R., Anwar, S.M.: Classification of perceived mental stress using a commercially available EEG Headband. IEEE J. Biomed. Health Inform. 23, 2257–2264 (2019)CrossRef
13.
go back to reference Hag, A., et al.: Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm. Sensors 21, 8370 (2021)CrossRef Hag, A., et al.: Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm. Sensors 21, 8370 (2021)CrossRef
14.
go back to reference Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekárt, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface, in Proceedings of the 2018 International Conference on Intelligent Systems (IS), pp. 795–800. https://doi.org/10.1109/IS.2018.8710576 Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekárt, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface, in Proceedings of the 2018 International Conference on Intelligent Systems (IS), pp. 795–800. https://​doi.​org/​10.​1109/​IS.​2018.​8710576
15.
go back to reference Puce, A., Hämäläinen, M.S.: A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci. 7, 58 (2017)CrossRef Puce, A., Hämäläinen, M.S.: A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci. 7, 58 (2017)CrossRef
18.
go back to reference Thieme, A., Belgrave, D., Doherty, G.: Machine learning in mental health: a systematic review of the HCI literature to support the development of effective and implementable ML systems. ACM Trans. Comput. Hum. Interact. 27, 546 (2020)CrossRef Thieme, A., Belgrave, D., Doherty, G.: Machine learning in mental health: a systematic review of the HCI literature to support the development of effective and implementable ML systems. ACM Trans. Comput. Hum. Interact. 27, 546 (2020)CrossRef
19.
go back to reference Alberdi, A., Aztiria, A., Basarab, A.: Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J. Biomed. Inform. 59, 49–75 (2016)CrossRef Alberdi, A., Aztiria, A., Basarab, A.: Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J. Biomed. Inform. 59, 49–75 (2016)CrossRef
20.
go back to reference Baghdadi, A., et al.: DASPS: A Database for Anxious States Based on a Psychological Stimulation (2019) Baghdadi, A., et al.: DASPS: A Database for Anxious States Based on a Psychological Stimulation (2019)
21.
go back to reference Hasan, M.J., Kim, J.-M.: A hybrid feature pool-based emotional stress state detection algorithm using EEG signals. Brain Sci. 9, 362–394 (2019)CrossRef Hasan, M.J., Kim, J.-M.: A hybrid feature pool-based emotional stress state detection algorithm using EEG signals. Brain Sci. 9, 362–394 (2019)CrossRef
22.
go back to reference Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31 (2012)CrossRef Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31 (2012)CrossRef
23.
go back to reference Liu, J., et al.: EEG-based emotion classification using a deep neural network and sparse autoencoder. Front. Syst. Neurosci. 14, 43 (2020)CrossRef Liu, J., et al.: EEG-based emotion classification using a deep neural network and sparse autoencoder. Front. Syst. Neurosci. 14, 43 (2020)CrossRef
24.
go back to reference Saeed, S.M.U., Anwar, S.M., Khalid, H., Majid, M., Bagci, A.U.: EEG based classification of long-term stress using psychological labeling. Sensors 20, 1886 (2020)CrossRef Saeed, S.M.U., Anwar, S.M., Khalid, H., Majid, M., Bagci, A.U.: EEG based classification of long-term stress using psychological labeling. Sensors 20, 1886 (2020)CrossRef
25.
go back to reference Ahammed, K., Ahmed, M.U.: Quantification of mental stress using complexity analysis of EEG signals. Biomed. Eng. 32, 2050011 (2020) Ahammed, K., Ahmed, M.U.: Quantification of mental stress using complexity analysis of EEG signals. Biomed. Eng. 32, 2050011 (2020)
26.
go back to reference Attallah, O.: An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics 10, 524 (2020)CrossRef Attallah, O.: An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics 10, 524 (2020)CrossRef
28.
go back to reference Islam, A., Sarkar, A.K., Ghosh, T.: EEG signal classification for mental stress during arithmetic task using wavelet transformation and statistical features, in Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), pp. 1–6 (2021). https://doi.org/10.1109/ACMI53878.2021.9528230 Islam, A., Sarkar, A.K., Ghosh, T.: EEG signal classification for mental stress during arithmetic task using wavelet transformation and statistical features, in Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), pp. 1–6 (2021). https://​doi.​org/​10.​1109/​ACMI53878.​2021.​9528230
29.
go back to reference Mishra, A., Ranjan, P., Ujlayan, A.: Empirical analysis of deep learning networks for affective video tagging. Multimed. Tools Appl. 79, 18611–18626 (2020)CrossRef Mishra, A., Ranjan, P., Ujlayan, A.: Empirical analysis of deep learning networks for affective video tagging. Multimed. Tools Appl. 79, 18611–18626 (2020)CrossRef
30.
31.
go back to reference Naqvi, S.F., et al.: Real-time stress assessment using sliding window based convolutional neural network. Sensors 20, 41–69 (2020)CrossRef Naqvi, S.F., et al.: Real-time stress assessment using sliding window based convolutional neural network. Sensors 20, 41–69 (2020)CrossRef
32.
go back to reference Bird, J.J., Pritchard, M., Fratini, A., Ekárt, A., Faria, D.R.: Synthetic biological signals machine-generated by GPT-2 improve the classification of EEG and EMG through data augmentation. IEEE Robot Autom. Lett. 6, 3498–3504 (2021)CrossRef Bird, J.J., Pritchard, M., Fratini, A., Ekárt, A., Faria, D.R.: Synthetic biological signals machine-generated by GPT-2 improve the classification of EEG and EMG through data augmentation. IEEE Robot Autom. Lett. 6, 3498–3504 (2021)CrossRef
33.
go back to reference Bird, J.J., Kobylarz, J., Faria, D.R., Ekárt, A., Ribeiro, E.P.: Cross-domain MLP and CNN transfer learning for biological signal processing: EEG and EMG. IEEE Access 8, 54789–54801 (2020)CrossRef Bird, J.J., Kobylarz, J., Faria, D.R., Ekárt, A., Ribeiro, E.P.: Cross-domain MLP and CNN transfer learning for biological signal processing: EEG and EMG. IEEE Access 8, 54789–54801 (2020)CrossRef
34.
go back to reference Zheng, W.-L., Lu, B.-L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7, 162–175 (2015)CrossRef Zheng, W.-L., Lu, B.-L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7, 162–175 (2015)CrossRef
37.
go back to reference Kamińska, D., Smółka, K., Zwoliński, G.: Detection of mental stress through EEG signal in virtual reality environment. Electronics 10, 12825 (2021)CrossRef Kamińska, D., Smółka, K., Zwoliński, G.: Detection of mental stress through EEG signal in virtual reality environment. Electronics 10, 12825 (2021)CrossRef
38.
go back to reference Hu, L., Zhang, Z.: EEG Signal Processing and Feature Extraction. Springer, New York (2019)CrossRef Hu, L., Zhang, Z.: EEG Signal Processing and Feature Extraction. Springer, New York (2019)CrossRef
39.
go back to reference Merry, R.R., Wavelet Theory and Applications: A Literature Study (2005) Merry, R.R., Wavelet Theory and Applications: A Literature Study (2005)
43.
go back to reference Iandola, F.N., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (2016) Iandola, F.N., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (2016)
44.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)CrossRef Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)CrossRef
47.
go back to reference Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. Adv. Neural. Inf. Process. Syst. 20, 182 (2007) Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. Adv. Neural. Inf. Process. Syst. 20, 182 (2007)
Metadata
Title
Stress Detection Using Novel Time–Frequency Decomposition: Progressive Fourier Transform
Authors
Hagar Hussein
Ashhadul Islam
Samir Brahim Belhaouari
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_16

Premium Partner