Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2020

01-04-2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires

Authors: V. Zhukova, P. Corte-Leon, L. González-Legarreta, M. Ipatov, A. Talaat, J. M. Blanco, J. Gonzalez, J. Olivera, A. Zhukov

Published in: Physics of Metals and Metallography | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Abstract—We showed that stress-annealing performed under proper conditions can improve magnetic softness, domain wall (DW) velocity and giant magneto-impedance (GMI) effect of Fe-based microwires. One order of magnitude improvement of GMI ratio and more than 100% increase of DW velocity have been achieved by stress-annealing. Observed dependencies have been related to the domain structure modification evidenced from the evolution of the hysteresis loops upon stress-annealing. We discussed observed results considering that the outer domain shell with transverse magnetic anisotropy affects the travelling DW in a similar way as the application of transverse bias magnetic field. GMI ratio improvement is attributed to beneficial magnetic anisotropy distribution achieved by stress-annealing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. P. Harrison, G. L. Turney, and H. Rowe, “Electrical properties of wires of high permeability,” Nature 135, 961 (1935).CrossRef E. P. Harrison, G. L. Turney, and H. Rowe, “Electrical properties of wires of high permeability,” Nature 135, 961 (1935).CrossRef
2.
go back to reference L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef
3.
go back to reference R. Beach and A. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef R. Beach and A. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef
4.
go back to reference M. H. Phan and H. X. Peng, “Giant magnetoimedance materials: Fundamentals and applications”, Prog. Mater. Sci., 53, 323–420 (2008).CrossRef M. H. Phan and H. X. Peng, “Giant magnetoimedance materials: Fundamentals and applications”, Prog. Mater. Sci., 53, 323–420 (2008).CrossRef
5.
go back to reference A. Zhukov, M. Ipatov, and V. Zhukova, “Advances in Giant Magnetoimpedance of Materials”, in Handbook of Magnetic Materials, Vol. 24, Ed. by K. H. J. Buschow (Elsevier, 2015), pp. 139–236 (chapter 2). A. Zhukov, M. Ipatov, and V. Zhukova, “Advances in Giant Magnetoimpedance of Materials”, in Handbook of Magnetic Materials, Vol. 24, Ed. by K. H. J. Buschow (Elsevier, 2015), pp. 139–236 (chapter 2).
6.
go back to reference M. Knobel, M. Vazquez, and L. Kraus, “Giant Magnetoimpedance,” in Handbook of Magnetic Materials, Vol. 15, Ed. by E. Bruck (North-Holland, 2003), pp. 497–563. M. Knobel, M. Vazquez, and L. Kraus, “Giant Magnetoimpedance,” in Handbook of Magnetic Materials, Vol. 15, Ed. by E. Bruck (North-Holland, 2003), pp. 497–563.
7.
go back to reference M. Hauser, L. Kraus, and P. Ripka, “Giant magnetoimpedance sensors,” IEEE Instr. Meas. Mag. 4(2), 28–32 (2001).CrossRef M. Hauser, L. Kraus, and P. Ripka, “Giant magnetoimpedance sensors,” IEEE Instr. Meas. Mag. 4(2), 28–32 (2001).CrossRef
8.
go back to reference H. Zhou, Z. Pan, and, and D. Zhang, “Operating point self-regulator for giant magneto-impedance magnetic sensor,” Sensors 17, 1103 (2017).CrossRef H. Zhou, Z. Pan, and, and D. Zhang, “Operating point self-regulator for giant magneto-impedance magnetic sensor,” Sensors 17, 1103 (2017).CrossRef
9.
go back to reference K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls,” J. Magn. Magn. Mater. 249, 351–356 (2001).CrossRef K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls,” J. Magn. Magn. Mater. 249, 351–356 (2001).CrossRef
10.
go back to reference T. Uchiyama, K. Mohri, and Sh. Nakayama, “Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor”, IEEE Trans. Magn. 47, 3070–3073 (2011).CrossRef T. Uchiyama, K. Mohri, and Sh. Nakayama, “Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor”, IEEE Trans. Magn. 47, 3070–3073 (2011).CrossRef
11.
go back to reference Y. Honkura, “Development of amorphous wire type MI sensors for automobile use,” J. Magn. Magn. Mater. 249, 375–381 (2002).CrossRef Y. Honkura, “Development of amorphous wire type MI sensors for automobile use,” J. Magn. Magn. Mater. 249, 375–381 (2002).CrossRef
12.
go back to reference A. F. Cobeño, A. Zhukov, J. M. Blanco, V. Larin, and J. Gonzalez, “Magnetoelastic sensor based on GMI of amorphous microwire,” Sensors and Actuators, A 91, 95–98 (2001).CrossRef A. F. Cobeño, A. Zhukov, J. M. Blanco, V. Larin, and J. Gonzalez, “Magnetoelastic sensor based on GMI of amorphous microwire,” Sensors and Actuators, A 91, 95–98 (2001).CrossRef
13.
go back to reference S. Gudoshnikov, N. Usov, A.Nozdrin, M. Ipatov, A. Zhukov, and V. Zhukova, “Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire,” Phys. Status Solidi A 211, 980–985 (2014).CrossRef S. Gudoshnikov, N. Usov, A.Nozdrin, M. Ipatov, A. Zhukov, and V. Zhukova, “Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire,” Phys. Status Solidi A 211, 980–985 (2014).CrossRef
14.
go back to reference L. Ding, S. Saez, C. Dolabdjian, L. G. C. Melo, A. Yelon, and D. Ménard, “Development of a high sensitivity Giant Magneto-Impedance magnetometer: comparison with a commercial Flux-Gate”, IEEE Sens. 9, 159–168 (2009).CrossRef L. Ding, S. Saez, C. Dolabdjian, L. G. C. Melo, A. Yelon, and D. Ménard, “Development of a high sensitivity Giant Magneto-Impedance magnetometer: comparison with a commercial Flux-Gate”, IEEE Sens. 9, 159–168 (2009).CrossRef
15.
go back to reference A. Talaat, J. Alonso, V. Zhukova, E. Garaio, J. A. García, H. Srikanth, M. H. Phan, and A. Zhukov, “Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia,” Sci. Rep. 6, 39300 (2016).CrossRef A. Talaat, J. Alonso, V. Zhukova, E. Garaio, J. A. García, H. Srikanth, M. H. Phan, and A. Zhukov, “Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia,” Sci. Rep. 6, 39300 (2016).CrossRef
16.
go back to reference L. V. Panina, K. Mohn, T. Uchyama, and M. Noda, “Giant magneto-impedance in Co-Rich amorphous wires and films”, IEEE Trans. Magn. 31, 1249–1260 (1995).CrossRef L. V. Panina, K. Mohn, T. Uchyama, and M. Noda, “Giant magneto-impedance in Co-Rich amorphous wires and films”, IEEE Trans. Magn. 31, 1249–1260 (1995).CrossRef
17.
go back to reference A. Zhukov, M. Ipatov, M.Churyukanova, A. Talaat, J.M. Blanco, and V. Zhukova, “Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials,” J. Alloy Compd. 727, 887–901 (2017).CrossRef A. Zhukov, M. Ipatov, M.Churyukanova, A. Talaat, J.M. Blanco, and V. Zhukova, “Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials,” J. Alloy Compd. 727, 887–901 (2017).CrossRef
18.
go back to reference R. Gemperle, L. Kraus and J. Schneider, “Magnetization reversal in amorphous (Fe1 − xNix)80P10B10 microwires,” Czezh. J. Phys. B 28, 1138–1145 (1978).CrossRef R. Gemperle, L. Kraus and J. Schneider, “Magnetization reversal in amorphous (Fe1 − xNix)80P10B10 microwires,” Czezh. J. Phys. B 28, 1138–1145 (1978).CrossRef
19.
go back to reference A. V. Ulitovsky, I. M. Maianski, and A. I. Avramenco, Method of continuous casting of glass coated microwire, Patent USSR No. 128427. A. V. Ulitovsky, I. M. Maianski, and A. I. Avramenco, Method of continuous casting of glass coated microwire, Patent USSR No. 128427.
20.
go back to reference S. A. Baranov, V. S. Larin and A. V. Torcunov, “Technology, preparation and properties of the cast glass-coated magnetic microwires,” Crystals 7, 136 (2017).CrossRef S. A. Baranov, V. S. Larin and A. V. Torcunov, “Technology, preparation and properties of the cast glass-coated magnetic microwires,” Crystals 7, 136 (2017).CrossRef
21.
go back to reference H. Chiriac and T.A. Óvári, “Amorphous glass-covered magnetic wires: preparation, properties, applications,” Prog. Mater. Sci., 40, 333–407 (1996).CrossRef H. Chiriac and T.A. Óvári, “Amorphous glass-covered magnetic wires: preparation, properties, applications,” Prog. Mater. Sci., 40, 333–407 (1996).CrossRef
22.
go back to reference A. Zhukov, J. Gonzalez, A. Torcunov, E. Pina, M. J. Prieto, A. F. Cobeño, J. M. Blanco, V. Larin, and S. Baranov, “Ferromagnetic resonance and structure of Fe-based glass-coated microwires,” J. Magn. Magn. Mater. 203, 238–240 (1999).CrossRef A. Zhukov, J. Gonzalez, A. Torcunov, E. Pina, M. J. Prieto, A. F. Cobeño, J. M. Blanco, V. Larin, and S. Baranov, “Ferromagnetic resonance and structure of Fe-based glass-coated microwires,” J. Magn. Magn. Mater. 203, 238–240 (1999).CrossRef
23.
go back to reference V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, and A. Zhukov, “Domain wall propagation in micrometric wires: Limits of single domain wall regime,” J. Appl. Phys. 111, 07E311 (2012).CrossRef V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, and A. Zhukov, “Domain wall propagation in micrometric wires: Limits of single domain wall regime,” J. Appl. Phys. 111, 07E311 (2012).CrossRef
24.
go back to reference K. R. Pirota, L. Kraus, H. Chiriac, and M. Knobel, “Magnetic properties and GMI in a CoFeSiB glass-covered microwire,” J. Magn. Magn. Mater. 21, 243–247 (2000).CrossRef K. R. Pirota, L. Kraus, H. Chiriac, and M. Knobel, “Magnetic properties and GMI in a CoFeSiB glass-covered microwire,” J. Magn. Magn. Mater. 21, 243–247 (2000).CrossRef
25.
go back to reference A. Zhukov, V. Zhukova, J.M. Blanco, and J. Gonzalez, “Recent research on magnetic properties of glass-coated microwires,” J. Magn. Magn. Mater. 294, 182–192 (2005).CrossRef A. Zhukov, V. Zhukova, J.M. Blanco, and J. Gonzalez, “Recent research on magnetic properties of glass-coated microwires,” J. Magn. Magn. Mater. 294, 182–192 (2005).CrossRef
26.
go back to reference P. Corte-León, V. Zhukova, M. Ipatov, J. M. Blanco, J. Gonzalez, and A. Zhukov, “Engineering of magnetic properties of Co-rich microwires by joule heating,” Intermetallics 105, 92–98 (2019).CrossRef P. Corte-León, V. Zhukova, M. Ipatov, J. M. Blanco, J. Gonzalez, and A. Zhukov, “Engineering of magnetic properties of Co-rich microwires by joule heating,” Intermetallics 105, 92–98 (2019).CrossRef
27.
go back to reference A. Zhukov, M. Ipatov, A. Talaat, J. M. Blanco, B. Hernando, L. Gonzalez-Legarreta, J. J. Suñol, and V. Zhukova, “Correlation of crystalline structure with magnetic and transport properties of glass-coated microwires,” Crystals 7, 41 (2017).CrossRef A. Zhukov, M. Ipatov, A. Talaat, J. M. Blanco, B. Hernando, L. Gonzalez-Legarreta, J. J. Suñol, and V. Zhukova, “Correlation of crystalline structure with magnetic and transport properties of glass-coated microwires,” Crystals 7, 41 (2017).CrossRef
28.
go back to reference A. Talaat, V. Zhukova, M. Ipatov, J. J. del Val, J. M. Blanco, L. Gonzalez-Legarreta, B. Hernando, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and magnetoimpedance in Fe-rich microwires by nanocrystallization”, JOM 68, 1563–1571 (2016).CrossRef A. Talaat, V. Zhukova, M. Ipatov, J. J. del Val, J. M. Blanco, L. Gonzalez-Legarreta, B. Hernando, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and magnetoimpedance in Fe-rich microwires by nanocrystallization”, JOM 68, 1563–1571 (2016).CrossRef
29.
go back to reference H. Chiriac, T.A. Ovari, and C.S. Marinescu, “Giant magneto-impedance effect in nanocrystalline glass-covered wires,” J. Appl. Phys. 83, 6584–6586 (1998).CrossRef H. Chiriac, T.A. Ovari, and C.S. Marinescu, “Giant magneto-impedance effect in nanocrystalline glass-covered wires,” J. Appl. Phys. 83, 6584–6586 (1998).CrossRef
30.
go back to reference V. Zhukova, J. M. Blanco, M. Ipatov, M.Churyukanova, S. Taskaev, and A. Zhukov, “Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress-annealing,” Sci. Rep. 8, 3202 (2018).CrossRef V. Zhukova, J. M. Blanco, M. Ipatov, M.Churyukanova, S. Taskaev, and A. Zhukov, “Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress-annealing,” Sci. Rep. 8, 3202 (2018).CrossRef
31.
go back to reference V. Zhukova, J.M. Blanco, M. Ipatov, J. Gonzalez, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing,” Scr. Mater. 142, 10–14 (2018).CrossRef V. Zhukova, J.M. Blanco, M. Ipatov, J. Gonzalez, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing,” Scr. Mater. 142, 10–14 (2018).CrossRef
32.
go back to reference V. Zhukova, M. Ipatov, A. Talaat, J. M. Blanco, M. Churyukanova, S. Taskaev, and A. Zhukov, “Effect of stress-induced anisotropy on high frequency magnetoimpedance effect of Fe and Co-rich glass-coated microwires,” J. Alloy Compd. 735, 1818–1825 (2018).CrossRef V. Zhukova, M. Ipatov, A. Talaat, J. M. Blanco, M. Churyukanova, S. Taskaev, and A. Zhukov, “Effect of stress-induced anisotropy on high frequency magnetoimpedance effect of Fe and Co-rich glass-coated microwires,” J. Alloy Compd. 735, 1818–1825 (2018).CrossRef
33.
go back to reference M. Vázquez and D.-X. Chen, “The magnetization reversal process in amorphous wires”, IEEE Trans. Magn., 31 (2), 1229–1239 (1995).CrossRef M. Vázquez and D.-X. Chen, “The magnetization reversal process in amorphous wires”, IEEE Trans. Magn., 31 (2), 1229–1239 (1995).CrossRef
34.
go back to reference V. Zhukova, J. M. Blanco, M. Ipatov, and A. Zhukov, “Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires,” J. Appl. Phys. 106, 113914 (2009).CrossRef V. Zhukova, J. M. Blanco, M. Ipatov, and A. Zhukov, “Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires,” J. Appl. Phys. 106, 113914 (2009).CrossRef
35.
go back to reference N. A. Usov, A. S. Antonov, and A. N. Lagar`kov, “Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy,” J. Magn. Magn. Mater., 185, 159–173 (1998).CrossRef N. A. Usov, A. S. Antonov, and A. N. Lagar`kov, “Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy,” J. Magn. Magn. Mater., 185, 159–173 (1998).CrossRef
36.
go back to reference A. Zhukov, V. Zhukova, V. Larin, J.M. Blanco, and J. Gonzalez, “Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy,” Phys. B 384, 1–4 (2006).CrossRef A. Zhukov, V. Zhukova, V. Larin, J.M. Blanco, and J. Gonzalez, “Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy,” Phys. B 384, 1–4 (2006).CrossRef
37.
go back to reference A. Kunz and S. C. Reiff, “Enhancing domain wall speed in nanowires with transverse magnetic fields,” J. Appl. Phys. 103, 07D903 (2008).CrossRef A. Kunz and S. C. Reiff, “Enhancing domain wall speed in nanowires with transverse magnetic fields,” J. Appl. Phys. 103, 07D903 (2008).CrossRef
38.
go back to reference J. Yang, G. S. D. Beach, C. Knutson, and J. L. Erskine, “Magnetic domain-wall velocity enhancement induced by a transverse magnetic field,” J. Magn. Magn. Mater. 397, 325–332 (2016).CrossRef J. Yang, G. S. D. Beach, C. Knutson, and J. L. Erskine, “Magnetic domain-wall velocity enhancement induced by a transverse magnetic field,” J. Magn. Magn. Mater. 397, 325–332 (2016).CrossRef
Metadata
Title
Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires
Authors
V. Zhukova
P. Corte-Leon
L. González-Legarreta
M. Ipatov
A. Talaat
J. M. Blanco
J. Gonzalez
J. Olivera
A. Zhukov
Publication date
01-04-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20040183

Other articles of this Issue 4/2020

Physics of Metals and Metallography 4/2020 Go to the issue