Skip to main content
Top
Published in: Journal of Materials Science 15/2021

16-02-2021 | Polymers & biopolymers

String electrospinning based on the standing wave vibration

Authors: Xiaoqing Chen, Youchen Zhang, Jiahao Liang, Haoyi Li, Mingjun Chen, Lisheng Cheng, Xuetao He, Weimin Yang

Published in: Journal of Materials Science | Issue 15/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Preparation of high-quality nanofibers with low applied voltage remains a challenge for needleless electrospinning. In this work, we developed a novel electrospinning technique based on the standing wave vibration of a string. The effects of the process parameters and string parameters on nanofiber diameter and productivity were investigated. The results indicated that standing wave electrospinning is competitive in terms of fiber diameter and productivity when compared with single conventional needle electrospinning. Moreover, the threshold voltage of standing wave electrospinning (18 kV) was approximately 30% lower than most of the current needleless electrospinning techniques (30 kV). The finest nanofiber with a diameter of 173 ± 48 nm was prepared at an applied voltage of 28 kV, a spinning distance of 10 cm, and a standing wave number of 3. The fiber diameter and productivity were significantly influenced by the string diameter and shape instead of the electrical conductivity of the string. The results demonstrated the considerable potential of standing wave electrospinning for fine nanofiber preparation under a low applied voltage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Yang D, Li L, Chen B, Shi S, Nie J, Ma G (2019) Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 163:74–85CrossRef Yang D, Li L, Chen B, Shi S, Nie J, Ma G (2019) Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 163:74–85CrossRef
3.
go back to reference Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. Appl Polym Sci 02(2):1285–1290CrossRef Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. Appl Polym Sci 02(2):1285–1290CrossRef
4.
go back to reference Dhineshbabu NR, Karunakaran G, Suriyaprabha R, Manivasakan P, Rajendran V (2014) Electrospun MgO/Nylon 6 hybrid nanofibers for protective clothing. Nano-Micro Lett 6(1):46–54CrossRef Dhineshbabu NR, Karunakaran G, Suriyaprabha R, Manivasakan P, Rajendran V (2014) Electrospun MgO/Nylon 6 hybrid nanofibers for protective clothing. Nano-Micro Lett 6(1):46–54CrossRef
5.
go back to reference Venugopal J, Ramakrishna S (2005) Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol 125(3):147–157CrossRef Venugopal J, Ramakrishna S (2005) Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol 125(3):147–157CrossRef
6.
go back to reference Ghosal K, Agatemor C, Špitálsky Z, Thomas S, Kny E (2019) Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem Eng J 358:1262–1278CrossRef Ghosal K, Agatemor C, Špitálsky Z, Thomas S, Kny E (2019) Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem Eng J 358:1262–1278CrossRef
7.
go back to reference Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRef Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139CrossRef
8.
go back to reference Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624CrossRef Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624CrossRef
9.
go back to reference Gao J, Li B, Huang X, Wang L, Lin L, Wang H, Xue H (2019) Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem Eng J 373:298–306CrossRef Gao J, Li B, Huang X, Wang L, Lin L, Wang H, Xue H (2019) Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem Eng J 373:298–306CrossRef
11.
go back to reference SalehHudin H, Sofia M, Edzrol N, Mahadi W, Nor L (2018) Multiple-jet electrospinning methods for nanofiber processing: a review. Mater Manuf Processes 33(5):479–498CrossRef SalehHudin H, Sofia M, Edzrol N, Mahadi W, Nor L (2018) Multiple-jet electrospinning methods for nanofiber processing: a review. Mater Manuf Processes 33(5):479–498CrossRef
12.
go back to reference Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012:1–13 Niu H, Lin T (2012) Fiber generators in needleless electrospinning. J Nanomater 2012:1–13
14.
go back to reference Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J (2009) Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. US Patent. Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J (2009) Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. US Patent.
15.
go back to reference Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, Wang Y, Li X, Wang W, Lan W (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6(15):1612–1616CrossRef Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, Wang Y, Li X, Wang W, Lan W (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6(15):1612–1616CrossRef
16.
go back to reference Wang X, Xu W (2011) Effect of experimental parameters on needleless electrospinning from a conical wire coil. Appl Polym Sci 123(6):3703–3709CrossRef Wang X, Xu W (2011) Effect of experimental parameters on needleless electrospinning from a conical wire coil. Appl Polym Sci 123(6):3703–3709CrossRef
17.
go back to reference Zhang Y, Cheng Z, Han Z, Zhao S, Zhao X, Kang L (2018) Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Adv 8(11):6069–6074CrossRef Zhang Y, Cheng Z, Han Z, Zhao S, Zhao X, Kang L (2018) Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Adv 8(11):6069–6074CrossRef
20.
go back to reference Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501CrossRef Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501CrossRef
21.
go back to reference Zhang Y, Zhang L, Cheng L, Qin Y, Li Y, Yang W, Li H (2018) Efficient preparation of polymer nanofibers by needle roller electrospinning with low threshold voltage. Polym Eng Sci 59(4):745–751CrossRef Zhang Y, Zhang L, Cheng L, Qin Y, Li Y, Yang W, Li H (2018) Efficient preparation of polymer nanofibers by needle roller electrospinning with low threshold voltage. Polym Eng Sci 59(4):745–751CrossRef
22.
go back to reference Jiang GJ, Zhao WM, Qin XH (2014) Composite nanofibers containing microparticles produced via a stepped pyramid-shaped spinneret. Adv Mater Res 893:149–152CrossRef Jiang GJ, Zhao WM, Qin XH (2014) Composite nanofibers containing microparticles produced via a stepped pyramid-shaped spinneret. Adv Mater Res 893:149–152CrossRef
26.
go back to reference Jiang G, Zhang S, Qin X (2013) High throughput of quality nanofibers via one stepped pyramid-shaped spinneret. Mater Lett 106:56–58CrossRef Jiang G, Zhang S, Qin X (2013) High throughput of quality nanofibers via one stepped pyramid-shaped spinneret. Mater Lett 106:56–58CrossRef
27.
go back to reference Hsieh CT, Lou CW, Pan YJ, Huang CL, Chiang KC (2016) Fabrication of poly(vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning. Fibers Polym 17(8):1217–1226CrossRef Hsieh CT, Lou CW, Pan YJ, Huang CL, Chiang KC (2016) Fabrication of poly(vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning. Fibers Polym 17(8):1217–1226CrossRef
29.
go back to reference Green TB, King SL, Li L (2011) Fine fiber electrospinning equipment, filter media systems and methods. US 2011/0223330 A1, United States Green TB, King SL, Li L (2011) Fine fiber electrospinning equipment, filter media systems and methods. US 2011/0223330 A1, United States
30.
go back to reference Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503CrossRef Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503CrossRef
31.
go back to reference Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRef Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRef
33.
go back to reference Sun B, Long YZ, Yu F, Li MM, Zhang HD, Li WJ, Xu TX (2012) Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale 4(6):2134–2137CrossRef Sun B, Long YZ, Yu F, Li MM, Zhang HD, Li WJ, Xu TX (2012) Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale 4(6):2134–2137CrossRef
35.
go back to reference Xin W, Niu H, Tong L, Wang X (2010) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1586 Xin W, Niu H, Tong L, Wang X (2010) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1586
36.
go back to reference Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45(9):2977–2980CrossRef Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45(9):2977–2980CrossRef
39.
go back to reference Wei L, Yu H, Jia L, Qin X (2018) High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret. Text Res J 88(1):80–88CrossRef Wei L, Yu H, Jia L, Qin X (2018) High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret. Text Res J 88(1):80–88CrossRef
Metadata
Title
String electrospinning based on the standing wave vibration
Authors
Xiaoqing Chen
Youchen Zhang
Jiahao Liang
Haoyi Li
Mingjun Chen
Lisheng Cheng
Xuetao He
Weimin Yang
Publication date
16-02-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05845-x

Other articles of this Issue 15/2021

Journal of Materials Science 15/2021 Go to the issue

Premium Partners