Skip to main content
Top

2020 | OriginalPaper | Chapter

9. Strömungen in komplexen Geometrien

Authors : Joel H. Ferziger, Milovan Perić, Robert L. Street

Published in: Numerische Strömungsmechanik

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Dieses Kapitel ist der Behandlung komplexer Geometrien gewidmet. Die Wahl des Gittertyps, die Gittererzeugungsansätze in komplexen Geometrien, die Gittereigenschaften, die Wahl der Geschwindigkeitskomponenten und der Variablenanordnung werden diskutiert. FD- und FV-Methoden werden neu betrachtet, und die Besonderheiten komplexer Geometrien (wie nichtorthogonale, blockstrukturierte und unstrukturierte Gitter, nichtkonforme Gitterschnittstellen, Kontrollvolumen beliebiger Polyederform, überlappende Gitter usw.) werden beschrieben. Besonderes Augenmerk wird auf die Druck-Korrektur-Gleichung und die Randbedingungen gelegt. Einige anschauliche Beispiele für stationäre und instationäre, zwei- und dreidimensionale laminare Strömungen, die mit Hilfe von bereitgestellten Rechenprogrammen basierend auf Teilschritt- und SIMPLE-Algorithmus berechnet wurden, werden vorgestellt und diskutiert. Die Auswertung von Diskretisierungsfehlern und der Vergleich von Ergebnissen, die mit verschiedenen Gittertypen (getrimmte kartesische und beliebige Polyedergitter) und kommerzieller CFD-Software erzielt wurden, sind ebenfalls enthalten.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Die stationäre Strömung muss nicht symmetrisch sein, wenn die Geometrie symmetrisch ist; in einigen symmetrischen Geometrien – wie Diffusoren und plötzliche Kanalerweiterungen – kann eine asymmetrische stationäre Strömung sowohl in Experimenten als auch in Simulationen erhalten werden.
 
Literature
go back to reference Arcilla, A. S., Häuser, J., Eiseman, P. R. & Thompson, J. F. (Hrsg.). (1991). Numerical grid generation in computational fluid dynamics and related fields. Amsterdam, Holland: North-Holland. Arcilla, A. S., Häuser, J., Eiseman, P. R. & Thompson, J. F. (Hrsg.). (1991). Numerical grid generation in computational fluid dynamics and related fields. Amsterdam, Holland: North-Holland.
go back to reference Baliga, B. R. & Patankar, S. V. (1983). A control-volume finite element method for two-dimensional fluid flow and heat transfer. Numer. Heat Transfer 6, 245–261. Baliga, B. R. & Patankar, S. V. (1983). A control-volume finite element method for two-dimensional fluid flow and heat transfer. Numer. Heat Transfer 6, 245–261.
go back to reference Baliga, B. R. (1997). Control-volume finite element method for fluid flow and heat transfer. In W. J. Minkowycz & E. M. Sparrow (Hrsg.), Advances in Numerical Heat Transfer (Bd. 1, S. 97–135). New York: Taylor and Francis,. Baliga, B. R. (1997). Control-volume finite element method for fluid flow and heat transfer. In W. J. Minkowycz & E. M. Sparrow (Hrsg.), Advances in Numerical Heat Transfer (Bd. 1, S. 97–135). New York: Taylor and Francis,.
go back to reference Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2006). Transport phenomena (Revised 2) Aufl.). New York: Wiley. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2006). Transport phenomena (Revised 2) Aufl.). New York: Wiley.
go back to reference Coelho, P., Pereira, J. C. F. & Carvalho, M. G. (1991). Calculation of laminar recirculating flows using a local non-staggered grid refinement system. Int. J. Numer. Methods Fluids12, 535–557. Coelho, P., Pereira, J. C. F. & Carvalho, M. G. (1991). Calculation of laminar recirculating flows using a local non-staggered grid refinement system. Int. J. Numer. Methods Fluids12, 535–557.
go back to reference Demirdžić, I. & Muzaferija, S. (1995). Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. MechĖngrg. 125, 235–255. Demirdžić, I. & Muzaferija, S. (1995). Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. MechĖngrg. 125, 235–255.
go back to reference Demirdžić, I. (2015). On the discretization of the diffusion term in finite-volume continuum mechanics. Numer. Heat Transfer 68, 1–10. Demirdžić, I. (2015). On the discretization of the diffusion term in finite-volume continuum mechanics. Numer. Heat Transfer 68, 1–10.
go back to reference Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics (2. Aufl., Bd. I & II). Berlin: Springer. Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics (2. Aufl., Bd. I & II). Berlin: Springer.
go back to reference Frey, P. J. & George, P. l. (2008). Mesh generation: Application to finite elements (2. Aufl.). New Jersey: Wiley-ISTE. Frey, P. J. & George, P. l. (2008). Mesh generation: Application to finite elements (2. Aufl.). New Jersey: Wiley-ISTE.
go back to reference Hadžić, H. (2005). Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids (PhD Dissertation). Technische Universität Hamburg-Harburg. Hadžić, H. (2005). Development and application of a finite volume method for the computation of flows around moving bodies on unstructured, overlapping grids (PhD Dissertation). Technische Universität Hamburg-Harburg.
go back to reference Hanaoka, A. (2013). An overset grid method coupling an orthogonal curvilinear grid solver and a Cartesian grid solver (PhD Dissertation). University of Iowa, Iowa City, IA. Hanaoka, A. (2013). An overset grid method coupling an orthogonal curvilinear grid solver and a Cartesian grid solver (PhD Dissertation). University of Iowa, Iowa City, IA.
go back to reference Hinatsu, M. & Ferziger, J. H. (1991). Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique. Int. J. Numer. Methods Fluids 13, 971–997. Hinatsu, M. & Ferziger, J. H. (1991). Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique. Int. J. Numer. Methods Fluids 13, 971–997.
go back to reference Hubbard, B. J. & Chen, H. C. (1994). A Chimera scheme for incompressible viscous flows with applications to submarine hydrodynamics. In 25th AIAA Fluid Dynamics Conference. AIAA Paper 94–2210 Hubbard, B. J. & Chen, H. C. (1994). A Chimera scheme for incompressible viscous flows with applications to submarine hydrodynamics. In 25th AIAA Fluid Dynamics Conference. AIAA Paper 94–2210
go back to reference Hubbard, B. J. & Chen, H. C. (1995). Calculations of unsteady flows around bodies with relative motion using a Chimera RANS method. In Proc. 10th ASCE Engineering Mechanics Conference. Boulder, CO: Univ. of Colorado at Boulder. Hubbard, B. J. & Chen, H. C. (1995). Calculations of unsteady flows around bodies with relative motion using a Chimera RANS method. In Proc. 10th ASCE Engineering Mechanics Conference. Boulder, CO: Univ. of Colorado at Boulder.
go back to reference Hylla, E. A. (2013). Eine Immersed Boundary Methode zur Simulation von Strömungen in komplexen und bewegten Geometrien (PhD Dissertation). Technische Universität Berlin, Berlin, Germany. Hylla, E. A. (2013). Eine Immersed Boundary Methode zur Simulation von Strömungen in komplexen und bewegten Geometrien (PhD Dissertation). Technische Universität Berlin, Berlin, Germany.
go back to reference Kordula, W. & Vinokur, M. (1983). Efficient computation of volume in flow predictions. AIAA J. 21, 917–918. Kordula, W. & Vinokur, M. (1983). Efficient computation of volume in flow predictions. AIAA J. 21, 917–918.
go back to reference Lilek, Ž., Muzaferija, S., Perić, M. & Seidl, V. (1997b). An implicit finite-volume method using non-matching blocks of structured grid Numer. Heat Transfer, Part B 32, 385–401. Lilek, Ž., Muzaferija, S., Perić, M. & Seidl, V. (1997b). An implicit finite-volume method using non-matching blocks of structured grid Numer. Heat Transfer, Part B 32, 385–401.
go back to reference Lundquist, K. A., Chow, F. K. & Lundquist, J. K. (2012). An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Monthly Wea. Review 140 3936–3955. Lundquist, K. A., Chow, F. K. & Lundquist, J. K. (2012). An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model. Monthly Wea. Review 140 3936–3955.
go back to reference Maliska, C. R. & Raithby, G. D. (1984). A method for computing three-dimensional lows using non-orthogonal boundary-fitted coordinates. Int. J. Numer. Methods Fluids, 4, 518–537. Maliska, C. R. & Raithby, G. D. (1984). A method for computing three-dimensional lows using non-orthogonal boundary-fitted coordinates. Int. J. Numer. Methods Fluids, 4, 518–537.
go back to reference Manhart, M. & Wengle, H. (1994) Large-eddy simulation of turbulent boundary layer over a hemisphere. P. Voke, L. Kleiser & J. P. Chollet (Hrsg.), Proc. 1st ERCOFTAC Workshop on Direct and Large Eddy Simulation (S. 299–310). Dordrecht: Kluwer Academic Publishers. Manhart, M. & Wengle, H. (1994) Large-eddy simulation of turbulent boundary layer over a hemisphere. P. Voke, L. Kleiser & J. P. Chollet (Hrsg.), Proc. 1st ERCOFTAC Workshop on Direct and Large Eddy Simulation (S. 299–310). Dordrecht: Kluwer Academic Publishers.
go back to reference Masson, C., Saabas, H. J. & Baliga, R. B. (1994). Co-located equal-order control-volume finite element method for two-dimensional axisymmetric incompressible fluid flow. Int. J. Numer. Methods Fluids18, 1–26. Masson, C., Saabas, H. J. & Baliga, R. B. (1994). Co-located equal-order control-volume finite element method for two-dimensional axisymmetric incompressible fluid flow. Int. J. Numer. Methods Fluids18, 1–26.
go back to reference Mittal, R. & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech. 37,239–261. Mittal, R. & Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid Mech. 37,239–261.
go back to reference Oden, J. T. (2006). Finite elements of non-linear continua. Mineola, NY: Dover Publications. Oden, J. T. (2006). Finite elements of non-linear continua. Mineola, NY: Dover Publications.
go back to reference Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries (PhD Dissertation). Technische Universität München, Fachgebiet Hydromechanik, Mitteilungen. Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries (PhD Dissertation). Technische Universität München, Fachgebiet Hydromechanik, Mitteilungen.
go back to reference Perić, M. (1990). Analysis of pressure-velocity coupling on non-orthogonal grids. Numerical Heat Transfer, Part B (Fundamentals) 17, 63–82. Perić, M. (1990). Analysis of pressure-velocity coupling on non-orthogonal grids. Numerical Heat Transfer, Part B (Fundamentals) 17, 63–82.
go back to reference Perng, C. Y. & Street, R. L. (1991). A coupled multigrid–domain-splitting technique for simulating incompressible flows in geometrically complex domains. Int. J. Numer. Methods Fluids 13, 269–286. Perng, C. Y. & Street, R. L. (1991). A coupled multigrid–domain-splitting technique for simulating incompressible flows in geometrically complex domains. Int. J. Numer. Methods Fluids 13, 269–286.
go back to reference Peskin, C. S. (1972). Flow patterns around heart valves: a digital computer method for solving the equations of motion (PhD Dissertation). Albert Einstein College of Medicine, Yeshiva University. Peskin, C. S. (1972). Flow patterns around heart valves: a digital computer method for solving the equations of motion (PhD Dissertation). Albert Einstein College of Medicine, Yeshiva University.
go back to reference Peskin, C. S. (2002). The immersed boundary method. Acta Numerica11, 479–517. Peskin, C. S. (2002). The immersed boundary method. Acta Numerica11, 479–517.
go back to reference Raw, M. J. (1985). A new control-volume-based finite element procedure for the numerical solution of the fluid flow and scalar transport equations (PhD Dissertation). Waterloo, Canada: University of Waterloo. Raw, M. J. (1985). A new control-volume-based finite element procedure for the numerical solution of the fluid flow and scalar transport equations (PhD Dissertation). Waterloo, Canada: University of Waterloo.
go back to reference Rhie, C. M. & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532. Rhie, C. M. & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532.
go back to reference Schneider, G. E. & Raw, M. J. (1987). Control-volume finite-element method for heat transfer and fluid flow using colocated variables. 1. Computational procedure. Numer. Heat Transfer 11, 363–390. Schneider, G. E. & Raw, M. J. (1987). Control-volume finite-element method for heat transfer and fluid flow using colocated variables. 1. Computational procedure. Numer. Heat Transfer 11, 363–390.
go back to reference Schreck, E. & Perić, M. (1993). Computation of fluid flow with a parallel multigrid solver. Int. J. Numer. Methods Fluids 16, 303–327. Schreck, E. & Perić, M. (1993). Computation of fluid flow with a parallel multigrid solver. Int. J. Numer. Methods Fluids 16, 303–327.
go back to reference Sedov, L. (1971). A course in continuum mechanics, Vol. 1 Groningen: Wolters-Noordhoft Publishing. Sedov, L. (1971). A course in continuum mechanics, Vol. 1 Groningen: Wolters-Noordhoft Publishing.
go back to reference Seidl, V., Perić, M. & Schmidt, S. (1996). Space- and time-parallel Navier-Stokes solver for 3D block-adaptive Cartesian grids. In A. Ecer, J. Periaux, N. Satofuka & S. Taylor (Hrsg.), Parallel Computational Fluid Dynamics 1995: Implementations and results using parallel computers (S. 577–584). North Holland – Elsevier. Seidl, V., Perić, M. & Schmidt, S. (1996). Space- and time-parallel Navier-Stokes solver for 3D block-adaptive Cartesian grids. In A. Ecer, J. Periaux, N. Satofuka & S. Taylor (Hrsg.), Parallel Computational Fluid Dynamics 1995: Implementations and results using parallel computers (S. 577–584). North Holland – Elsevier.
go back to reference Taira, K. & Colonius, T. (2007). The immersed boundary method: A projection approach. J. Compt. Phys. 225,2118–2137. Taira, K. & Colonius, T. (2007). The immersed boundary method: A projection approach. J. Compt. Phys. 225,2118–2137.
go back to reference Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. (1985). Numerical grid generation – foundations and applications. New York: Elsevier. Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. (1985). Numerical grid generation – foundations and applications. New York: Elsevier.
go back to reference Truesdell, C. (1991). A first course in rational continuum mechanics (2. Aufl., Bd. 1). Boston: Academic Press. Truesdell, C. (1991). A first course in rational continuum mechanics (2. Aufl., Bd. 1). Boston: Academic Press.
go back to reference Tseng, Y. H. & Ferziger, J. H. (2003). A ghost-cell immersed boundary method for flow in complex geometry A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192 593–623. Tseng, Y. H. & Ferziger, J. H. (2003). A ghost-cell immersed boundary method for flow in complex geometry A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192 593–623.
go back to reference Zang, Y. & Street, R. L. (1995). A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int. Numer. Methods Fluids 20, 341–361. Zang, Y. & Street, R. L. (1995). A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int. Numer. Methods Fluids 20, 341–361.
go back to reference Zienkiewicz, O. C., Taylor, R. L. & Nithiarasu, P. (2005). The finite element method for fluid dynamics (6. Aufl.). Burlington, MA: Butterworth- Heinemann (Elsevier). Zienkiewicz, O. C., Taylor, R. L. & Nithiarasu, P. (2005). The finite element method for fluid dynamics (6. Aufl.). Burlington, MA: Butterworth- Heinemann (Elsevier).
Metadata
Title
Strömungen in komplexen Geometrien
Authors
Joel H. Ferziger
Milovan Perić
Robert L. Street
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46544-8_9

Premium Partner