Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

17-01-2019 | OriginalPaper | Issue 1/2019

International Journal on Document Analysis and Recognition (IJDAR) 1/2019

Stroke order normalization for improving recognition of online handwritten mathematical expressions

Journal:
International Journal on Document Analysis and Recognition (IJDAR) > Issue 1/2019
Authors:
Anh Duc Le, Hai Dai Nguyen, Bipin Indurkhya, Masaki Nakagawa
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We present a technique based on stroke order normalization for improving recognition of online handwritten mathematical expressions (ME). The stroke order dependent system has less time complexity than the stroke order free system, but it must incorporate special grammar rules to cope with stroke order variations. The stroke order normalization technique solves this problem and also the problem of unexpected stroke order variations without increasing the time complexity of ME recognition. In order to normalize stroke order, the XY cut method is modified since its original form causes problems when structural components in ME overlap. First, vertically ordered strokes are located by detecting vertical symbols and their upper/lower components, which are treated as MEs and reordered recursively. Second, unordered strokes on the left side of the vertical symbols are reordered as horizontally ordered strokes. Third, the remaining strokes are reordered recursively. The horizontally ordered strokes are reordered from left to right, and the vertically ordered strokes are reordered from top to bottom. Finally, the proposed stroke order normalization is combined with the stroke order dependent ME recognition system. The evaluations on the CROHME 2014 database show that the ME recognition system incorporating the stroke order normalization outperforms all other systems that use only CROHME 2014 for training while the processing time is kept low.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2019

International Journal on Document Analysis and Recognition (IJDAR) 1/2019 Go to the issue

Premium Partner

    Image Credits