Skip to main content
Top
Published in: Mechanics of Composite Materials 4/2023

04-09-2023

Strong and Tough Bulk Metallic Glass Composites Based on the Double-Network Concept

Authors: Y. Jiang, Y. Zhu, T. Li, X. Ding

Published in: Mechanics of Composite Materials | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A double-network concept is first adopted to toughen bulk metallic glasses (BMGs) by combining BMG cellular skeletons as the filler and a ductile alloy as the matrix. The strengthening and toughening mechanisms of these resulting composites are elucidated using FEM simulations. Three typical metallic glass composites with different cellular BMG skeletons, exhibiting a substantial increase in their tensile plasticity, are considered. Numerical results showed that these composites greatly exceeded the corresponding cellular skeletons in the tensile strength and toughness. The resulting composites far exceeded those of either of their parent materials in the most of their mechanical characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. R., 44, Nos. 2-3, 45-89 (2004). W. H. Wang, C. Dong, and C. H. Shek, “Bulk metallic glasses,” Mater. Sci. Eng. R., 44, Nos. 2-3, 45-89 (2004).
2.
go back to reference P. Saini and R. L. Narayan, “On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses,” J. Alloys Comp., 898, 162960 (2022).CrossRef P. Saini and R. L. Narayan, “On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses,” J. Alloys Comp., 898, 162960 (2022).CrossRef
3.
go back to reference L. Zhang, R. L. Narayan, H. M. Fu, U. Ramamurty, W. R. Li, Y. D. Li, and H. F. Zhang, “Tuning the microstructure and metastability of b-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites,” Acta Mater., 168, 24-36 (2019).CrossRef L. Zhang, R. L. Narayan, H. M. Fu, U. Ramamurty, W. R. Li, Y. D. Li, and H. F. Zhang, “Tuning the microstructure and metastability of b-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites,” Acta Mater., 168, 24-36 (2019).CrossRef
4.
go back to reference L. Zhang, R. L. Narayan, B. A. Sun, T. Y. Yan, U. Ramamurty, J. Eckert, and H. F. Zhang, “Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites,” Phys. Rev. Lett., 125, 055501 (2020).CrossRef L. Zhang, R. L. Narayan, B. A. Sun, T. Y. Yan, U. Ramamurty, J. Eckert, and H. F. Zhang, “Cooperative shear in bulk metallic glass composites containing metastable β-Ti dendrites,” Phys. Rev. Lett., 125, 055501 (2020).CrossRef
5.
go back to reference L. Zhang, H. F. Zhang, W. Q. Li, T. Gemming, P. Wang, M. Bönisch, D. Şopu, J. Eckert, and S. Pauly, “β-type Ti-based bulk metallic glass composites with tailored structural metastability,” J. Alloys Comp., 708, 972-981 (2017).CrossRef L. Zhang, H. F. Zhang, W. Q. Li, T. Gemming, P. Wang, M. Bönisch, D. Şopu, J. Eckert, and S. Pauly, “β-type Ti-based bulk metallic glass composites with tailored structural metastability,” J. Alloys Comp., 708, 972-981 (2017).CrossRef
6.
go back to reference P. C. Wong, S. M. Song, Y. Y. Nien, W. R. Wang, P. H. Tsai, J. L. Wu, and J. S. C. Jang, “Mechanical properties enhanced by the dispersion of porous Mo particles in the biodegradable solid and bi-phase core–shell structure of Mg-based bulk metallic glass composites for applications in orthopedic implants,” J. Alloys. Comp., 877, 160233 (2021).CrossRef P. C. Wong, S. M. Song, Y. Y. Nien, W. R. Wang, P. H. Tsai, J. L. Wu, and J. S. C. Jang, “Mechanical properties enhanced by the dispersion of porous Mo particles in the biodegradable solid and bi-phase core–shell structure of Mg-based bulk metallic glass composites for applications in orthopedic implants,” J. Alloys. Comp., 877, 160233 (2021).CrossRef
7.
go back to reference D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, 451, 1085-1089 (2008).CrossRef D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, 451, 1085-1089 (2008).CrossRef
8.
go back to reference H. Y. Li, J. W. Qiao, Z. Wang, X. H. Shi, H. J. Yang, and Y. C. Wu, “A semi-empirical model for predicting yielding in metallic glass matrix composites,” Scripta Mater., 170, 71-75 (2019).CrossRef H. Y. Li, J. W. Qiao, Z. Wang, X. H. Shi, H. J. Yang, and Y. C. Wu, “A semi-empirical model for predicting yielding in metallic glass matrix composites,” Scripta Mater., 170, 71-75 (2019).CrossRef
9.
go back to reference J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng. R, 100, 1-69 (2016).CrossRef J. W. Qiao, H. L. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng. R, 100, 1-69 (2016).CrossRef
10.
go back to reference W. J. Gao, W. W. Zhang, T. Zhang, C. Yang, X. S. Huang, Z. Y. Liu, Z. Wang, W. H. Li, W. R. Li, L. Li, and L. H. Liu, “Large tensile plasticity in Zr-based metallic glass/ stainless steel interpenetrating-phase composites prepared by high pressure die casting,” Comp. Part B, 224, 109226 (2021).CrossRef W. J. Gao, W. W. Zhang, T. Zhang, C. Yang, X. S. Huang, Z. Y. Liu, Z. Wang, W. H. Li, W. R. Li, L. Li, and L. H. Liu, “Large tensile plasticity in Zr-based metallic glass/ stainless steel interpenetrating-phase composites prepared by high pressure die casting,” Comp. Part B, 224, 109226 (2021).CrossRef
11.
go back to reference B. Sarac and J. Schroers, “From brittle to ductile: Density optimization for Zr-BMG cellular structures,” Scripta Mater., 68, No. 12, 921-924 (2013).CrossRef B. Sarac and J. Schroers, “From brittle to ductile: Density optimization for Zr-BMG cellular structures,” Scripta Mater., 68, No. 12, 921-924 (2013).CrossRef
12.
go back to reference Z. Liu, W. Chen, J. Carstensen, J. Ketkaew, R. Miguel, O. Mota, J. K. Guest, and J. Schroers, “3D metallic glass cellular structures,” Acta Mater., 105, 35-43 (2016).CrossRef Z. Liu, W. Chen, J. Carstensen, J. Ketkaew, R. Miguel, O. Mota, J. K. Guest, and J. Schroers, “3D metallic glass cellular structures,” Acta Mater., 105, 35-43 (2016).CrossRef
13.
go back to reference W. Chen, Z. Liu, H. M. Robinson, and J. Schroers, “Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures,” Acta Mater., 73, 259–274 (2014).CrossRef W. Chen, Z. Liu, H. M. Robinson, and J. Schroers, “Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures,” Acta Mater., 73, 259–274 (2014).CrossRef
14.
go back to reference S. S. Hirmukhe, K. E. Prasad, and I. Singh, “Finite element analysis of deformation and failure mechanisms in nanoscale hexagonal cellular structures of metallic glasses,” Mech. Mater., 160, 103946 (2021).CrossRef S. S. Hirmukhe, K. E. Prasad, and I. Singh, “Finite element analysis of deformation and failure mechanisms in nanoscale hexagonal cellular structures of metallic glasses,” Mech. Mater., 160, 103946 (2021).CrossRef
15.
go back to reference D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite,” J. Mater. Sci. Techn., 106, 225-235 (2022).CrossRef D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite,” J. Mater. Sci. Techn., 106, 225-235 (2022).CrossRef
16.
go back to reference R. L. Narayan, P. Tandaiya, G. R. Garrett, M. D. Demetriou, and U. Ramamurty, “On the variability in fracture toughness of ‘ductile’ bulk metallic glasses,” Scripta Mater., 102, 75-78 (2015).CrossRef R. L. Narayan, P. Tandaiya, G. R. Garrett, M. D. Demetriou, and U. Ramamurty, “On the variability in fracture toughness of ‘ductile’ bulk metallic glasses,” Scripta Mater., 102, 75-78 (2015).CrossRef
17.
go back to reference D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Shear fracture in bulk metallic glass composites,” Acta Mater., 213, 116963 (2021).CrossRef D. Rajpoot, R. L. Narayan, L. Zhang, P. Kumar, H. F. Zhang, P. Tandaiya, and U. Ramamurty, “Shear fracture in bulk metallic glass composites,” Acta Mater., 213, 116963 (2021).CrossRef
18.
go back to reference S. Y. Yuan, X. X. Song, and P. S. Branicio, “Tuning the mechanical properties of shape memory metallic glass composites with brick and mortar designs,” Scripta Mater., 186, 69-73 (2020).CrossRef S. Y. Yuan, X. X. Song, and P. S. Branicio, “Tuning the mechanical properties of shape memory metallic glass composites with brick and mortar designs,” Scripta Mater., 186, 69-73 (2020).CrossRef
19.
go back to reference Y. P. Jiang, L. G. Sun, Q. Q. Wu, and K. Qiu, “Enhanced tensile ductility of metallic glass matrix composites with novel microstructure,” J. Non-Cryst. Solids, 459, 26-31 (2017).CrossRef Y. P. Jiang, L. G. Sun, Q. Q. Wu, and K. Qiu, “Enhanced tensile ductility of metallic glass matrix composites with novel microstructure,” J. Non-Cryst. Solids, 459, 26-31 (2017).CrossRef
20.
go back to reference Z. D. Sha, C. M. She, G. K. Xu, Q. X. Pei, Z. S. Liu, T. J. Wang, and H. J. Gao, “Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties,” Mater. Today, 20, No. 10, 569-576 (2017).CrossRef Z. D. Sha, C. M. She, G. K. Xu, Q. X. Pei, Z. S. Liu, T. J. Wang, and H. J. Gao, “Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties,” Mater. Today, 20, No. 10, 569-576 (2017).CrossRef
21.
go back to reference R. Liontas and J. R. Greer, “3D nano-architected metallic glass: Size effect suppresses catastrophic failure,” Acta Mater., 133, 393-407 (2017).CrossRef R. Liontas and J. R. Greer, “3D nano-architected metallic glass: Size effect suppresses catastrophic failure,” Acta Mater., 133, 393-407 (2017).CrossRef
22.
go back to reference C. Zhang, X. M. Li, S. Q. Liu, H. Liu, L. J. Yu, and L. Liu, “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications,” J. Alloys Comp., 790, 963-973 (2019).CrossRef C. Zhang, X. M. Li, S. Q. Liu, H. Liu, L. J. Yu, and L. Liu, “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications,” J. Alloys Comp., 790, 963-973 (2019).CrossRef
23.
go back to reference C. Zhang, D. Ouyang, S. Pauly, and L. Liu, “3D printing of bulk metallic glasses,” Mater. Sci. Eng. R, 145, 100625 (2021).CrossRef C. Zhang, D. Ouyang, S. Pauly, and L. Liu, “3D printing of bulk metallic glasses,” Mater. Sci. Eng. R, 145, 100625 (2021).CrossRef
24.
go back to reference J. P. Gong, “Materials both tough and soft,” Science, 344, No. 6180, 161-162 (2014).CrossRef J. P. Gong, “Materials both tough and soft,” Science, 344, No. 6180, 161-162 (2014).CrossRef
25.
go back to reference J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature, 489, 133-136 (2012).CrossRef J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. G. Suo, “Highly stretchable and tough hydrogels,” Nature, 489, 133-136 (2012).CrossRef
26.
go back to reference E. Ducrot, Y. L. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, “Toughening elastomers with sacrificial bonds and watching them break,” Science, 344, No. 6180, 186-189 (2014).CrossRef E. Ducrot, Y. L. Chen, M. Bulters, R. P. Sijbesma, and C. Creton, “Toughening elastomers with sacrificial bonds and watching them break,” Science, 344, No. 6180, 186-189 (2014).CrossRef
27.
go back to reference T. Okumura, R. Takahashi, K. Hagita, D. R. King, and J. P. Gong, “Improving the strength and toughness of macroscale double networks by exploiting Poisson’s ratio mismatch,” Scientific Reports, 11, 13280 (2021).CrossRef T. Okumura, R. Takahashi, K. Hagita, D. R. King, and J. P. Gong, “Improving the strength and toughness of macroscale double networks by exploiting Poisson’s ratio mismatch,” Scientific Reports, 11, 13280 (2021).CrossRef
28.
go back to reference F. Spaepen, “A microscopic mechanism for steady-state inhomogeneous flow in metallic glasses,” Acta Metall., 25, No. 4, 407-415 (1977).CrossRef F. Spaepen, “A microscopic mechanism for steady-state inhomogeneous flow in metallic glasses,” Acta Metall., 25, No. 4, 407-415 (1977).CrossRef
29.
go back to reference P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals,” Acta Metall., 30, No. 2, 447-455(1982).CrossRef P. S. Steif, F. Spaepen, and J. W. Hutchinson, “Strain localization in amorphous metals,” Acta Metall., 30, No. 2, 447-455(1982).CrossRef
30.
go back to reference J. W. Hutchinson, “Generalizing J-2 flow theory: Fundamental issues in strain gradient plasticity,” Acta Mech. Sinica, 28, No. 4, 1078-1086 (2012).CrossRef J. W. Hutchinson, “Generalizing J-2 flow theory: Fundamental issues in strain gradient plasticity,” Acta Mech. Sinica, 28, No. 4, 1078-1086 (2012).CrossRef
31.
go back to reference Y. F. Gao, “An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model,” Modell. Simul. Mater. Sci. Eng., 14, No. 8, 1329-1345 (2006).CrossRef Y. F. Gao, “An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model,” Modell. Simul. Mater. Sci. Eng., 14, No. 8, 1329-1345 (2006).CrossRef
32.
go back to reference A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media,” J. Eng. Mater-T ASME, 99, 2-15(1977).CrossRef A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media,” J. Eng. Mater-T ASME, 99, 2-15(1977).CrossRef
33.
34.
go back to reference B. A. Sun, Y. C. Hu, D. P. Wang, Z. G. Zhu, P. Wen, W. H. Wang, C. T. Liu, and Y. Yang, “Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses,” Acta Mater., 121, 266-276 (2016).CrossRef B. A. Sun, Y. C. Hu, D. P. Wang, Z. G. Zhu, P. Wen, W. H. Wang, C. T. Liu, and Y. Yang, “Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses,” Acta Mater., 121, 266-276 (2016).CrossRef
35.
go back to reference R. T. Qu, M. Calin, J. Eckert, and Z. F. Zhang, “Metallic glasses: Notch-insensitive materials,” Scripta Mater., 66, No. 10, 733-736 (2012).CrossRef R. T. Qu, M. Calin, J. Eckert, and Z. F. Zhang, “Metallic glasses: Notch-insensitive materials,” Scripta Mater., 66, No. 10, 733-736 (2012).CrossRef
36.
go back to reference S. Sinha, M. Komarasamy, T. H. Wang, R. S. Haridas, P. Agrawal, S. Shukla, S. Thapliyal, M. Frank, and R. S. Mishra, “Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy,” Mater. Sci. Eng. A, 774, 138918 (2020).CrossRef S. Sinha, M. Komarasamy, T. H. Wang, R. S. Haridas, P. Agrawal, S. Shukla, S. Thapliyal, M. Frank, and R. S. Mishra, “Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy,” Mater. Sci. Eng. A, 774, 138918 (2020).CrossRef
37.
go back to reference D. M. Liu, S. F. Lin, S.F. Ge, Z.W. Zhu, H.M. Fu and H.F. Zhang, “A Ti-based bulk metallic glass composite with excellent tensile properties and significant work-hardening capacity,” Mater. Lett., 233, 107 (2018).CrossRef D. M. Liu, S. F. Lin, S.F. Ge, Z.W. Zhu, H.M. Fu and H.F. Zhang, “A Ti-based bulk metallic glass composite with excellent tensile properties and significant work-hardening capacity,” Mater. Lett., 233, 107 (2018).CrossRef
38.
go back to reference T. Y. Yan, L. Zhang, R. L. Narayan, J. Y. Pang, Y. Wu, H. M. Fu, H. Li, H. F. Zhang, and U. Ramamurty, “Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals,” Acta Mater., 229, 117827 (2022).CrossRef T. Y. Yan, L. Zhang, R. L. Narayan, J. Y. Pang, Y. Wu, H. M. Fu, H. Li, H. F. Zhang, and U. Ramamurty, “Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals,” Acta Mater., 229, 117827 (2022).CrossRef
39.
go back to reference L. Tian, R.L. Narayan, K. Zhou, R. Babicheva, U. Ramamurty, and Z. W. Shan, “A real-time TEM study of the deformation mechanisms in β-Ti reinforced bulk metallic glass composites,” Mater. Sci. Eng. A, 818, 141427 (2021).CrossRef L. Tian, R.L. Narayan, K. Zhou, R. Babicheva, U. Ramamurty, and Z. W. Shan, “A real-time TEM study of the deformation mechanisms in β-Ti reinforced bulk metallic glass composites,” Mater. Sci. Eng. A, 818, 141427 (2021).CrossRef
Metadata
Title
Strong and Tough Bulk Metallic Glass Composites Based on the Double-Network Concept
Authors
Y. Jiang
Y. Zhu
T. Li
X. Ding
Publication date
04-09-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 4/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10132-8

Other articles of this Issue 4/2023

Mechanics of Composite Materials 4/2023 Go to the issue

Premium Partners