Skip to main content
Top
Published in: Journal of Scientific Computing 2/2018

11-10-2017

Strong Stability Preserving Explicit Peer Methods for Discontinuous Galerkin Discretizations

Authors: Marcel Klinge, Rüdiger Weiner

Published in: Journal of Scientific Computing | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we study explicit peer methods with the strong stability preserving (SSP) property for the numerical solution of hyperbolic conservation laws in one space dimension. A system of ordinary differential equations is obtained by discontinuous Galerkin (DG) spatial discretizations, which are often used in the method of lines approach to solve hyperbolic differential equations. We present in this work the construction of explicit peer methods with stability regions that are designed for DG spatial discretizations and with large SSP coefficients. Methods of second- and third order with up to six stages are optimized with respect to both properties. The methods constructed are tested and compared with appropriate Runge–Kutta methods. The advantage of high stage order is verified numerically.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Calvo, M., Montijano, J.I., Rández, L., Van Daele, M.: On the derivation of explicit two-step peer methods. Appl. Numer. Math. 61(4), 395–409 (2011)MathSciNetCrossRefMATH Calvo, M., Montijano, J.I., Rández, L., Van Daele, M.: On the derivation of explicit two-step peer methods. Appl. Numer. Math. 61(4), 395–409 (2011)MathSciNetCrossRefMATH
3.
go back to reference Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH
4.
go back to reference Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25(3), 337–361 (1989)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25(3), 337–361 (1989)MathSciNetCrossRefMATH
5.
go back to reference Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH
6.
go back to reference Constantinescu, E., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2009)MathSciNetCrossRefMATH Constantinescu, E., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2009)MathSciNetCrossRefMATH
8.
go back to reference Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH
10.
go back to reference Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. J. Comput. Appl. Math. 296, 776–788 (2016)MathSciNetCrossRefMATH Horváth, Z., Podhaisky, H., Weiner, R.: Strong stability preserving explicit peer methods. J. Comput. Appl. Math. 296, 776–788 (2016)MathSciNetCrossRefMATH
12.
go back to reference Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Chichester (2009)CrossRefMATH Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Chichester (2009)CrossRefMATH
13.
go back to reference Ketcheson, D.I., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)MathSciNetCrossRefMATH Ketcheson, D.I., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)MathSciNetCrossRefMATH
14.
go back to reference Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49(6), 2618–2639 (2011)MathSciNetCrossRefMATH Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49(6), 2618–2639 (2011)MathSciNetCrossRefMATH
15.
go back to reference Klinge, M.: Peer-Methoden für DG-Diskretisierungen. In: Master’s thesis, Martin Luther University Halle-Wittenberg (2016) Klinge, M.: Peer-Methoden für DG-Diskretisierungen. In: Master’s thesis, Martin Luther University Halle-Wittenberg (2016)
16.
go back to reference Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic \(p\)-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 198(21–26), 1766–1774 (2009)CrossRefMATH Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic \(p\)-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 198(21–26), 1766–1774 (2009)CrossRefMATH
17.
go back to reference Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)MathSciNetCrossRefMATH Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)MathSciNetCrossRefMATH
18.
go back to reference Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60(2), 313–344 (2014)MathSciNetCrossRefMATH Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60(2), 313–344 (2014)MathSciNetCrossRefMATH
19.
go back to reference Kulikov, G.Y., Weiner, R.: Variable-stepsize interpolating explicit parallel peer methods with inherent global error control. SIAM J. Sci. Comput. 32(4), 1695–1723 (2010)MathSciNetCrossRefMATH Kulikov, G.Y., Weiner, R.: Variable-stepsize interpolating explicit parallel peer methods with inherent global error control. SIAM J. Sci. Comput. 32(4), 1695–1723 (2010)MathSciNetCrossRefMATH
20.
go back to reference Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. J. Sci. Comput. 67(2), 493–513 (2016)MathSciNetCrossRefMATH Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. J. Sci. Comput. 67(2), 493–513 (2016)MathSciNetCrossRefMATH
21.
go back to reference Mirabito, C., Dawson, C., Kubatko, E.J., Westerink, J.J., Bunya, S.: Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes. Comput. Methods Appl. Mech. Eng. 200(1–4), 189–207 (2010)MathSciNetMATH Mirabito, C., Dawson, C., Kubatko, E.J., Westerink, J.J., Bunya, S.: Implementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes. Comput. Methods Appl. Mech. Eng. 200(1–4), 189–207 (2010)MathSciNetMATH
22.
go back to reference Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: Technical Report LA-UR-73-479 p. Los Alamos Scientific Laboratory (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: Technical Report LA-UR-73-479 p. Los Alamos Scientific Laboratory (1973)
23.
go back to reference Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227(3), 1887–1922 (2008)MathSciNetCrossRefMATH Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227(3), 1887–1922 (2008)MathSciNetCrossRefMATH
24.
go back to reference Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405–418 (1987)MathSciNetCrossRefMATH Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50(4), 405–418 (1987)MathSciNetCrossRefMATH
25.
27.
go back to reference Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetCrossRefMATH Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetCrossRefMATH
28.
go back to reference Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217–220, 139–152 (2012)MathSciNetCrossRefMATH Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217–220, 139–152 (2012)MathSciNetCrossRefMATH
29.
go back to reference Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55(4), 609–619 (2008)MathSciNetCrossRefMATH Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55(4), 609–619 (2008)MathSciNetCrossRefMATH
30.
go back to reference Weiner, R., Schmitt, B.A., Podhaisky, H., Jebens, S.: Superconvergent explicit two-step peer methods. J. Comput. Appl. Math. 223, 753–764 (2009)MathSciNetCrossRefMATH Weiner, R., Schmitt, B.A., Podhaisky, H., Jebens, S.: Superconvergent explicit two-step peer methods. J. Comput. Appl. Math. 223, 753–764 (2009)MathSciNetCrossRefMATH
Metadata
Title
Strong Stability Preserving Explicit Peer Methods for Discontinuous Galerkin Discretizations
Authors
Marcel Klinge
Rüdiger Weiner
Publication date
11-10-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0573-x

Other articles of this Issue 2/2018

Journal of Scientific Computing 2/2018 Go to the issue

Premium Partner