Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

Stronger Security for Reusable Garbled Circuits, General Definitions and Attacks

Author : Shweta Agrawal

Published in: Advances in Cryptology – CRYPTO 2017

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We construct a functional encryption scheme for circuits which simultaneously achieves and improves upon the security of the current best known, and incomparable, constructions from standard assumptions: reusable garbled circuits by Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich (STOC 2013) [GKP+13] and predicate encryption for circuits by Gorbunov, Vaikuntanathan and Wee (CRYPTO 2015) [GVW15]. Our scheme is secure based on the learning with errors (LWE) assumption. Our construction implies:
1.
A new construction for reusable garbled circuits that achieves stronger security than the only known prior construction [GKP+13].
 
2.
A new construction for bounded collusion functional encryption with substantial efficiency benefits: our public parameters and ciphertext size incur an additive growth of \(O(Q^2)\), where Q is the number of permissible queries (We note that due to a lower bound [AGVW13], the ciphertext size must necessarily grow with Q). Additionally, the ciphertext of our scheme is succinct, in that it does not depend on the size of the circuit. By contrast, the prior best construction [GKP+13, GVW12] incurred a multiplicative blowup of \(O(Q^4)\) in both the public parameters and ciphertext size. However, our scheme is secure in a weaker game than [GVW12].
 
Additionally, we show that existing LWE based predicate encryption schemes [AFV11, GVW15] are completely insecure against a general functional encryption adversary (i.e. in the “strong attribute hiding” game). We demonstrate three different attacks, the strongest of which is applicable even to the inner product predicate encryption scheme [AFV11]. Our attacks are practical and allow the attacker to completely recover \(\mathbf {x}\) from its encryption \(\mathsf{Enc}(\mathbf {x})\) within a polynomial number of queries. This illustrates that the barrier between predicate and functional encryption is not just a limitation of proof techniques. We believe these attacks shed significant light on the barriers to achieving full fledged functional encryption from LWE, even for simple functionalities such as inner product zero testing [KSW08, AFV11].
Along the way, we develop a new proof technique that permits the simulator to program public parameters based on keys that will be requested in the future. This technique may be of independent interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The careful reader may observe that the simulator is disabled when \(C(\mathbf {a})=0\), not when \(C(\mathbf {a})=1\), though we have claimed that [AFV11, GVW15] can support 0-queries and not 1 queries. This is because, traditional functional encryption literature defines decryption to be permitted when the function value is 1, and defines the function value to be 1 when \(C(\mathbf {a})=0\). We follow this flip to be consistent with prior work.
 
2
This is presently a weak security game which we term as very-selective where the circuit C as well as the challenge message is announced before the parameters are generated. This restriction will be removed subsequently.
 
3
Please see Appendix 2.3 for the definition of full security.
 
4
Note that the step of “programming” \({\varvec{\beta }}_1\) forces the simulator to use its knowledge of \(\mathbf {y}\). On the other hand, the simulator in [GVW15] does not need to use \(\mathbf {y}\) for simulation, implying that even \(\mathbf {y}\) is hidden when the attacker does not request 1-keys. Since the real decryption procedure needs \(\mathbf {y}\) in order to decrypt, this (in our opinion) further illustrates the weakness of the weak attribute hiding definition.
 
5
More precisely, we require that the adversary may request the same single function any number of times, but multiple requests for the same function result in the same key.
 
6
While the construction in [ALS16] has stateful \(\mathsf{KeyGen}\) against a general adversary, we only need the single key version which is clearly stateless.
 
7
Note that we are abusing notation slightly, since the message space of \({\textsf {FuLin}}\) was set as \(\mathbb {Z}_q^m\) but \(\mathbf {s}\in \mathbb {Z}_q^n\). However, since \(n < m\), we can pad it with zeroes to make it match. We do not explicitly state this for the sake of notational convenience.
 
8
Here, 1 is used to denote the \(m \times m\) identity matrix.
 
Literature
[ABB10]
[AFV11]
go back to reference Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_2 CrossRef Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). doi:10.​1007/​978-3-642-25385-0_​2 CrossRef
[Agr16]
go back to reference Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. Eprint 2016/654 (2016) Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. Eprint 2016/654 (2016)
[AGVW13]
go back to reference Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_28 CrossRef Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40084-1_​28 CrossRef
[AJLA+12]
go back to reference Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_29 CrossRef Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-29011-4_​29 CrossRef
[Ajt99]
go back to reference Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6_1 CrossRef Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). doi:10.​1007/​3-540-48523-6_​1 CrossRef
[ALS16]
go back to reference Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear functions from standard assumptions. In: CRYPTO (2016) Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for linear functions from standard assumptions. In: CRYPTO (2016)
[AP14]
[BF01]
[BGG+14]
go back to reference Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_30 CrossRef Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​30 CrossRef
[BGV12]
go back to reference Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012) Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012)
[BSW07]
go back to reference Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy (2007) Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy (2007)
[BSW11]
[BV11]
go back to reference Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS (2011) Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS (2011)
[BV14]
go back to reference Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS (2014) Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS (2014)
[BV16]
go back to reference Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3_13 CrossRef Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53015-3_​13 CrossRef
[BW06]
go back to reference Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006). doi:10.1007/11818175_17 CrossRef Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006). doi:10.​1007/​11818175_​17 CrossRef
[CFL+16]
go back to reference Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_20 CrossRef Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49890-3_​20 CrossRef
[CGH+15]
go back to reference Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: CRYPTO (2015) Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: CRYPTO (2015)
[CHKP10]
[CHL+15]
go back to reference Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_1 Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46800-5_​1
[CJL]
go back to reference Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without a low level encoding of zero. Eprint 2016/139 Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without a low level encoding of zero. Eprint 2016/139
[CLT13]
[Coc01]
go back to reference Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3_32 CrossRef Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi:10.​1007/​3-540-45325-3_​32 CrossRef
[Gen09]
go back to reference Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009) Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)
[GGH13a]
[GGH+13b]
go back to reference Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013). http://eprint.iacr.org/ Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013). http://​eprint.​iacr.​org/​
[GGH+13c]
go back to reference Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_27 CrossRef Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40084-1_​27 CrossRef
[GGH15]
[GGHZ14]
go back to reference Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without obfuscation. In: IACR Cryptology ePrint Archive, vol. 2014, p. 666 (2014) Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without obfuscation. In: IACR Cryptology ePrint Archive, vol. 2014, p. 666 (2014)
[GKP+13]
go back to reference Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–564 (2013) Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–564 (2013)
[GKPV10]
go back to reference Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ITCS (2010) Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ITCS (2010)
[GKW16]
go back to reference Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5_14 CrossRef Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53644-5_​14 CrossRef
[GPSW06]
go back to reference Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS (2006) Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS (2006)
[GPV08]
go back to reference Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008) Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)
[GSW13]
go back to reference Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5 CrossRef Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40041-4_​5 CrossRef
[GTKP+13]
go back to reference Goldwasser, S., Kalai, Y.T., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of STOC (2013) Goldwasser, S., Kalai, Y.T., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of STOC (2013)
[GVW12]
go back to reference Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_11 CrossRef Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-32009-5_​11 CrossRef
[GVW13]
go back to reference Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC (2013) Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC (2013)
[GVW15]
[HJ15]
go back to reference Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301 (2015) Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301 (2015)
[KSW08]
go back to reference Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_9 CrossRef Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.​1007/​978-3-540-78967-3_​9 CrossRef
[LOS+10]
go back to reference Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_4 CrossRef Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-13190-5_​4 CrossRef
[MP12]
go back to reference Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_41 CrossRef Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-29011-4_​41 CrossRef
[MSZ16]
go back to reference Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_22 CrossRef Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53008-5_​22 CrossRef
[PR12]
Metadata
Title
Stronger Security for Reusable Garbled Circuits, General Definitions and Attacks
Author
Shweta Agrawal
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-63688-7_1

Premium Partner