Skip to main content
Top

2024 | OriginalPaper | Chapter

Strongly Regular Multigraphs

Authors : Leah H. Meissner, John T. Saccoman

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A family of regular graphs which have a direct connection to structures in algebraic combinatorics are strongly regular graphs. These graphs are defined by 4 parameters, n, k, a, and c, where n is the number of nodes, k is the degree of each node, a is the number of common neighbors for every adjacent pair of nodes, and c is the number of common neighbors for every nonadjacent pair of nodes. A multigraph is a graph that has no self-loops, but may have multiple edges and is formally defined by specifying a graph G and assigning a multiplicity to each edge of G. We examine underlying strongly regular multigraphs in order to further clarify their properties, specifically with regard to combinatorial configurations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Cvetković, P. Rowlinson, S. Simić An Introduction to the Theory of Graph Spectra London Mathematical Society, Student Texts 75 (2010). D. Cvetković, P. Rowlinson, S. Simić An Introduction to the Theory of Graph Spectra London Mathematical Society, Student Texts 75 (2010).
2.
go back to reference G. Chartrand and P. Zhang. A First Course in Graph Theory Dover Publications, Inc. (2012). G. Chartrand and P. Zhang. A First Course in Graph Theory Dover Publications, Inc. (2012).
3.
go back to reference J.H. van Lint and R.M. Wilson. A Course in Combinatorics Cambridge University Press. (1992). J.H. van Lint and R.M. Wilson. A Course in Combinatorics Cambridge University Press. (1992).
4.
go back to reference D. Stinson. Combinatorial Designs: Constructions and Analysis Springer. (2004). D. Stinson. Combinatorial Designs: Constructions and Analysis Springer. (2004).
5.
go back to reference C.J. Colbourn and J.H. Dinitz. Handbook of Combinatorial Designs Chapman and Hall/CRC. (2007). C.J. Colbourn and J.H. Dinitz. Handbook of Combinatorial Designs Chapman and Hall/CRC. (2007).
6.
go back to reference S.M. Nyayate, R.M. Pawale, and M.S. Shrikhande. Characterization of quasi-symmetric designs with eigenvalues of their block graphs Australian Journal of Combinatorics, vol. 68, no. 1, Dec 2017. S.M. Nyayate, R.M. Pawale, and M.S. Shrikhande. Characterization of quasi-symmetric designs with eigenvalues of their block graphs Australian Journal of Combinatorics, vol. 68, no. 1, Dec 2017.
7.
go back to reference A. Neumaier. Quasi-Residual 2-Designs, 1 \(\frac {1}{2}\)- Designs, and Strongly Regular Multigraphs Geometriae Dedicata, vol. 12, 1982. A. Neumaier. Quasi-Residual 2-Designs, 1 \(\frac {1}{2}\)- Designs, and Strongly Regular Multigraphs Geometriae Dedicata, vol. 12, 1982.
Metadata
Title
Strongly Regular Multigraphs
Authors
Leah H. Meissner
John T. Saccoman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_15

Premium Partner