Skip to main content
Top
Published in:

04-04-2022 | Original Article

Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model

Authors: Pei-Liang Bian, Hai Qing

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, we developed a new FEM framework to simulate the mechanical responses of the Euler–Bernoulli beam with a two-phase local/nonlocal mixed model. The shape function is a fifth-order polynomial and constitutive boundary conditions (CBCs) are treated as external loads. The main advantages of the present model are the efficient of convergence, simplicity of expressions, and the flexibility on handling various boundary conditions as well as the external loads. Several numerical tests, including static bending, free vibration, and elastic bulking, are carried out to validate the FEM framework. The results showed the complete agreement with the exact solution from Laplace transformation and indicated a simple and reliable scheme to deal with complicated nanosystems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shankar R, Ghosh TK, Spontak RJ (2007) Electroactive nanostructured polymers as tunable actuators. Adv Mater 19(17):2218–2223CrossRef Shankar R, Ghosh TK, Spontak RJ (2007) Electroactive nanostructured polymers as tunable actuators. Adv Mater 19(17):2218–2223CrossRef
2.
go back to reference Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8(7):522–526CrossRef Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8(7):522–526CrossRef
3.
go back to reference Chortos A, Koleilat GI, Pfattner R, Kong D, Lin P, Nur R, Lei T, Wang H, Liu N, Lai YC et al (2016) Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater 28(22):4441–4448CrossRef Chortos A, Koleilat GI, Pfattner R, Kong D, Lin P, Nur R, Lei T, Wang H, Liu N, Lai YC et al (2016) Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater 28(22):4441–4448CrossRef
4.
go back to reference Lee BH, Moon DI, Jang H, Kim CH, Seol ML, Choi JM, Lee DI, Kim MW, Yoon JB, Choi YK (2014) A mechanical and electrical transistor structure (mets) with a sub-2 nm nanogap for effective voltage scaling. Nanoscale 6(14):7799–7804CrossRef Lee BH, Moon DI, Jang H, Kim CH, Seol ML, Choi JM, Lee DI, Kim MW, Yoon JB, Choi YK (2014) A mechanical and electrical transistor structure (mets) with a sub-2 nm nanogap for effective voltage scaling. Nanoscale 6(14):7799–7804CrossRef
5.
go back to reference Cheng B, Yang S, Woldu YT, Shafique S, Wang F (2020) A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio. Nanotechnology 31(14):145707CrossRef Cheng B, Yang S, Woldu YT, Shafique S, Wang F (2020) A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio. Nanotechnology 31(14):145707CrossRef
8.
go back to reference Tian X, Sladek J, Sladek V, Deng Q, Li Q (2021) A collocation mixed finite element method for the analysis of flexoelectric solids. International Journal of Solids and Structures 217:27–39 Tian X, Sladek J, Sladek V, Deng Q, Li Q (2021) A collocation mixed finite element method for the analysis of flexoelectric solids. International Journal of Solids and Structures 217:27–39
9.
go back to reference Sladek J, Sladek V, Hosseini SM (2021) Analysis of a curved timoshenko nano-beam with flexoelectricity. Acta Mechanica 232(4):1563–1581 Sladek J, Sladek V, Hosseini SM (2021) Analysis of a curved timoshenko nano-beam with flexoelectricity. Acta Mechanica 232(4):1563–1581
10.
go back to reference Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435CrossRefMATH Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10(5):425–435CrossRefMATH
12.
go back to reference Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef
13.
go back to reference Zhang P, Qing H (2021) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770CrossRef Zhang P, Qing H (2021) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770CrossRef
14.
go back to reference Tuna M, Kirca M (2017) Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284CrossRef Tuna M, Kirca M (2017) Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos Struct 179:269–284CrossRef
15.
go back to reference Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos Part B Eng 114:184–188CrossRef Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos Part B Eng 114:184–188CrossRef
17.
go back to reference Ghosh S, Sundararaghavan V, Waas AM (2014) Construction of multi-dimensional isotropic Kernels for nonlocal elasticity based on phonon dispersion data. Int J Solids Struct 51(2):392–401CrossRef Ghosh S, Sundararaghavan V, Waas AM (2014) Construction of multi-dimensional isotropic Kernels for nonlocal elasticity based on phonon dispersion data. Int J Solids Struct 51(2):392–401CrossRef
18.
go back to reference Lazar M, Maugin GA, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 43(6):1404–1421MathSciNetCrossRefMATH Lazar M, Maugin GA, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 43(6):1404–1421MathSciNetCrossRefMATH
19.
go back to reference Romano G, Barretta R, Diaco M (2017) On nonlocal integral models for elastic nano-beams. Int J Mech Sci 131:490–499CrossRef Romano G, Barretta R, Diaco M (2017) On nonlocal integral models for elastic nano-beams. Int J Mech Sci 131:490–499CrossRef
20.
go back to reference Wang Y, Zhu X, Dai H (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114CrossRef Wang Y, Zhu X, Dai H (2016) Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv 6(8):085114CrossRef
21.
go back to reference Wang Y, Huang K, Zhu X, Lou Z (2019) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids 24(3):559–572MathSciNetCrossRefMATH Wang Y, Huang K, Zhu X, Lou Z (2019) Exact solutions for the bending of Timoshenko beams using Eringen’s two-phase nonlocal model. Math Mech Solids 24(3):559–572MathSciNetCrossRefMATH
22.
go back to reference Zhang P, Qing H, Gao C (2019) Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 99(8):e201800329MathSciNet Zhang P, Qing H, Gao C (2019) Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 99(8):e201800329MathSciNet
23.
go back to reference Zhang P, Qing H, Gao CF (2020) Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 100(7):e201900207MathSciNet Zhang P, Qing H, Gao CF (2020) Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 100(7):e201900207MathSciNet
24.
go back to reference Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248MathSciNetCrossRefMATH Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci 119:232–248MathSciNetCrossRefMATH
25.
go back to reference Zhu X, Wang Y, Dai HH (2017) Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. Int J Eng Sci 116:130–140MathSciNetCrossRefMATH Zhu X, Wang Y, Dai HH (2017) Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. Int J Eng Sci 116:130–140MathSciNetCrossRefMATH
26.
go back to reference Khaniki HB (2018) Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Phys E Low Dimens Syst Nanostruct 99:310–319CrossRef Khaniki HB (2018) Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Phys E Low Dimens Syst Nanostruct 99:310–319CrossRef
29.
go back to reference Fakher M, Hosseini-Hashemi S (2020) Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. J Vib Control 27:378–391MathSciNetCrossRef Fakher M, Hosseini-Hashemi S (2020) Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. J Vib Control 27:378–391MathSciNetCrossRef
30.
go back to reference Sahmani S, Fattahi A, Ahmed N (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with gpl. Eng Comput 36:1–20 Sahmani S, Fattahi A, Ahmed N (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with gpl. Eng Comput 36:1–20
31.
go back to reference Wang X, Zhou G et al (2021) Static and free vibration analysis of thin arbitrary-shaped triangular plates under various boundary and internal supports. Thin Walled Struct 162:107592CrossRef Wang X, Zhou G et al (2021) Static and free vibration analysis of thin arbitrary-shaped triangular plates under various boundary and internal supports. Thin Walled Struct 162:107592CrossRef
32.
go back to reference Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe, BerlinMATH Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe, BerlinMATH
33.
go back to reference Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, AmsterdamMATH Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, AmsterdamMATH
34.
go back to reference Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys E Low Dimens Syst Nanostruct 88:194–200CrossRef Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys E Low Dimens Syst Nanostruct 88:194–200CrossRef
35.
go back to reference Eptaimeros K, Koutsoumaris CC, Tsamasphyros G (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80CrossRef Eptaimeros K, Koutsoumaris CC, Tsamasphyros G (2016) Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci 115:68–80CrossRef
36.
go back to reference Taghizadeh M, Ovesy H, Ghannadpour S (2016) Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn 16(06):1550015MathSciNetCrossRefMATH Taghizadeh M, Ovesy H, Ghannadpour S (2016) Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn 16(06):1550015MathSciNetCrossRefMATH
37.
go back to reference Merzouki T, Houari MSA, Haboussi M, Bessaim A, Ganapathi M (2020) Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory. Eng Comput 1–19 Merzouki T, Houari MSA, Haboussi M, Bessaim A, Ganapathi M (2020) Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory. Eng Comput 1–19
38.
go back to reference Phung-Van P, Thai CH (2021) A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Eng Comput 1–14 Phung-Van P, Thai CH (2021) A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates. Eng Comput 1–14
39.
go back to reference Pradhan S (2012) Nonlocal finite element analysis and small scale effects of CNTS with Timoshenko beam theory. Finite Elements Anal Des 50:8–20CrossRef Pradhan S (2012) Nonlocal finite element analysis and small scale effects of CNTS with Timoshenko beam theory. Finite Elements Anal Des 50:8–20CrossRef
40.
go back to reference Phadikar J, Pradhan S (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499CrossRef Phadikar J, Pradhan S (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci 49(3):492–499CrossRef
41.
go back to reference Tran VK, Pham QH, Nguyen-Thoi T (2020) A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng Comput 1–26 Tran VK, Pham QH, Nguyen-Thoi T (2020) A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng Comput 1–26
42.
go back to reference Thai HT, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science 54:58–66 Thai HT, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science 54:58–66
43.
go back to reference Safeer M, Khadimallah MA, Taj M, Hussain M, Elaloui E, Touns A (2021) Strength performance with buckling analysis of intermediate filaments by consideration nonlocal parameters. Computers and Concrete 28(1):69–75 Safeer M, Khadimallah MA, Taj M, Hussain M, Elaloui E, Touns A (2021) Strength performance with buckling analysis of intermediate filaments by consideration nonlocal parameters. Computers and Concrete 28(1):69–75
44.
go back to reference Van Vinh P (2022) Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter. Physica E: Low-dimensional Systems and Nanostructures135:114951 Van Vinh P (2022) Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter. Physica E: Low-dimensional Systems and Nanostructures135:114951
45.
go back to reference Hoa LK, Vinh PV, Duc ND, Trung NT, Son LT, Thom DV (2020) Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science p 0954406220964522 Hoa LK, Vinh PV, Duc ND, Trung NT, Son LT, Thom DV (2020) Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science p 0954406220964522
46.
go back to reference Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2021) On vibration of functionally graded sandwich nanoplates in the thermal environment. Journal of Sandwich Structures & Materials 23(6):2217–2244 Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2021) On vibration of functionally graded sandwich nanoplates in the thermal environment. Journal of Sandwich Structures & Materials 23(6):2217–2244
47.
go back to reference Pisano A, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2d finite element based solutions. Int J Solids Struct 46(21):3836–3849CrossRefMATH Pisano A, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2d finite element based solutions. Int J Solids Struct 46(21):3836–3849CrossRefMATH
48.
go back to reference Fakher M, Hosseini-Hashemi S (2020) Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng Comput 1–15 Fakher M, Hosseini-Hashemi S (2020) Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng Comput 1–15
49.
go back to reference Eringen AC (1984) Theory of nonlocal elasticity and some applications. Princeton University NJ Department of Civil Engineering, Technical report Eringen AC (1984) Theory of nonlocal elasticity and some applications. Princeton University NJ Department of Civil Engineering, Technical report
Metadata
Title
Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model
Authors
Pei-Liang Bian
Hai Qing
Publication date
04-04-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01575-5