Skip to main content
Top

2022 | OriginalPaper | Chapter

6. Structural Design and Testing of Digitally Manufactured Concrete Structures

Authors : Domenico Asprone, Costantino Menna, Freek Bos, Jaime Mata-Falcón, Liberato Ferrara, Ferdinando Auricchio, Ezio Cadoni, Vítor M. C. F. Cunha, Laura Esposito, Asko Fromm, Steffen Grünewald, Harald Kloft, Viktor Mechtcherine, Venkatesh Naidu Nerella, Roel Schipper

Published in: Digital Fabrication with Cement-Based Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The form freedom enabled by digital fabrication with concrete technologies provides advantages for a wide range of concrete based objects, from architectural to structural elements. The current chapter focuses on the specifics of structural design and engineering of DFC with emphasis on those technologies based on Additive Manufacturing with extrusion. Since it is a new and innovative way to build, a clear common approach to structural engineering has not yet been developed. As a result, this chapter aims to introduce the specific challenges of structural design and engineering with the additive manufacturing technology, providing an overview of structural typologies that have been developed (especially concerning the reinforcement strategies, including fibre reinforcement). Furthermore, the structural principles adopted in DFC and the codified approaches used in conventional reinforced concrete is compared, and putative structural testing procedures and validation methods for DFC are reported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference (2002) RILEM TC 162-TDF Design of steel fibre reinforced concrete using the σ-w method: principles and applications. Materials and Structures, 35(5), 262–278. (2002) RILEM TC 162-TDF Design of steel fibre reinforced concrete using the σ-w method: principles and applications. Materials and Structures, 35(5), 262–278.
go back to reference (2003) Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: sigma-epsilon-design method. Materials and Structures, 36(8), 560–567. (2003) Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: sigma-epsilon-design method. Materials and Structures, 36(8), 560–567.
go back to reference (2005) EN 14651:2005, Test method for metallic fibre concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual). (2005) EN 14651:2005, Test method for metallic fibre concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual).
go back to reference Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66. Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66.
go back to reference Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015a). Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cement and Concrete Composites, 57, 153–165. Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015a). Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cement and Concrete Composites, 57, 153–165.
go back to reference Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015b). Time-dependent flexural behaviour of cracked steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 72, 21–36. Abrishambaf, A., Barros, J. A. O., and Cunha, V. M. C. F. (2015b). Time-dependent flexural behaviour of cracked steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 72, 21–36.
go back to reference Akbarzadeh, Masoud, Tom Van Mele, and Philippe Block. (2015). On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams. Computer-Aided Design, 63, 118–128. Akbarzadeh, Masoud, Tom Van Mele, and Philippe Block. (2015). On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams. Computer-Aided Design, 63, 118–128.
go back to reference Abrishambaf, A., Cunha, V. M., and Barros, J. A. (2016). A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels. Engineering Fracture Mechanics, 162, 1–20. Abrishambaf, A., Cunha, V. M., and Barros, J. A. (2016). A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels. Engineering Fracture Mechanics, 162, 1–20.
go back to reference Baril, M. A., Sorelli, L., Rethore, J., Baby, F., Toutlemonde, F., Ferrara, L., Bernardi, S., and Fafard, M. (2016). Effect of Casting Flow Defects on the Crack Propagation in UHPFRC Thin Slabs by Means of Stereovision Digital Image Correlation. Construction and Building Materials, 129, 182–192. Baril, M. A., Sorelli, L., Rethore, J., Baby, F., Toutlemonde, F., Ferrara, L., Bernardi, S., and Fafard, M. (2016). Effect of Casting Flow Defects on the Crack Propagation in UHPFRC Thin Slabs by Means of Stereovision Digital Image Correlation. Construction and Building Materials, 129, 182–192.
go back to reference Bos, R. Wolfs, Z. Ahmed, and T. Salet. (2019). Large Scale Testing of Digitally Fabricated Concrete (DFC) Elements. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 129–147. Bos, R. Wolfs, Z. Ahmed, and T. Salet. (2019). Large Scale Testing of Digitally Fabricated Concrete (DFC) Elements. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 129–147.
go back to reference Bos, F. P., Ahmed, Z. Y., Jutinov, E. R., et al. (2017). Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials (Basel, Switzerland), 10(11). Bos, F. P., Ahmed, Z. Y., Jutinov, E. R., et al. (2017). Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials (Basel, Switzerland), 10(11).
go back to reference Bos, F. P., Wolfs, R. J. M., Ahmed, Z. Y., and Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: potentials and challenges. Virtual and Physical Prototyping, 11(3), 209–225. Bos, F. P., Wolfs, R. J. M., Ahmed, Z. Y., and Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: potentials and challenges. Virtual and Physical Prototyping, 11(3), 209–225.
go back to reference Bran Anleu, P. C., Wangler, T., and Flatt, R. J. (2018). Chloride Ingress Through Cold Joints in Digitally Fabricated Concrete by micro-XRF Mapping. Bran Anleu, P. C., Wangler, T., and Flatt, R. J. (2018). Chloride Ingress Through Cold Joints in Digitally Fabricated Concrete by micro-XRF Mapping.
go back to reference Burke, P. L., and Shah, S. P. (1999). Durability of extruded thin sheet PVA fiber-reinforced cement composites. In: ACI SP-190 high performance fiber-reinforced concrete thin sheet products, pp. 133–64. Burke, P. L., and Shah, S. P. (1999). Durability of extruded thin sheet PVA fiber-reinforced cement composites. In: ACI SP-190 high performance fiber-reinforced concrete thin sheet products, pp. 133–64.
go back to reference Buswell, R. A., da Silva, W. R, Bos, F. P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., and Roussel, N. (2020). A process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research, Special Issue for Digital Concrete. Buswell, R. A., da Silva, W. R, Bos, F. P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., and Roussel, N. (2020). A process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research, Special Issue for Digital Concrete.
go back to reference Cunha V. M. C. F., Barros, J. A. O., and Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struct J, 94–95, 22–33. Cunha V. M. C. F., Barros, J. A. O., and Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Comput Struct J, 94–95, 22–33.
go back to reference Cunha, V. M. C. F, Barros, J. A. O., Sena-Cruz, J. M. (2011). An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cem Concr Res J, 41, 64–76. Cunha, V. M. C. F, Barros, J. A. O., Sena-Cruz, J. M. (2011). An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cem Concr Res J, 41, 64–76.
go back to reference di Prisco, M., Ferrara, L., and Lamperti, M. G. L. (2013). Double Edge Wedge Splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Materials and Structures, 46(11), 1893–1918. di Prisco, M., Ferrara, L., and Lamperti, M. G. L. (2013). Double Edge Wedge Splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Materials and Structures, 46(11), 1893–1918.
go back to reference Feng, P., Meng, X., Chen, J. F., and Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials 93, 486–497. Feng, P., Meng, X., Chen, J. F., and Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials 93, 486–497.
go back to reference Ferrara, L. (2015). Tailoring the orientation of fibres in High Performance Fibre Reinforced Cementitious Composites: part 1 - experimental evidence, monitoring and prediction. Journal of Materials and Structures Integrity, 9, 1/2/3, 72–91. Ferrara, L. (2015). Tailoring the orientation of fibres in High Performance Fibre Reinforced Cementitious Composites: part 1 - experimental evidence, monitoring and prediction. Journal of Materials and Structures Integrity, 9, 1/2/3, 72–91.
go back to reference Ferrara, L., Ozyurt, N., and di Prisco, M. (2011). High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow” induced fibre orientation. Materials and Structures, 44(1), 109–128. Ferrara, L., Ozyurt, N., and di Prisco, M. (2011). High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow” induced fibre orientation. Materials and Structures, 44(1), 109–128.
go back to reference Ferrara, L., Cremonesi, M., Faifer, M., Toscani, S., Sorelli, L., Baril, M. A., Réthoré, J., Baby, F., Toutlemonde, F., and Bernardi, S. (2017). Structural elements made with highly flowable UHPFRC: correlating Computational Fluid Dynamics (CFD) predictions and non-destructive survey of fibre dispersion with failure modes. Engineering Structures, 133, 151–171. Ferrara, L., Cremonesi, M., Faifer, M., Toscani, S., Sorelli, L., Baril, M. A., Réthoré, J., Baby, F., Toutlemonde, F., and Bernardi, S. (2017). Structural elements made with highly flowable UHPFRC: correlating Computational Fluid Dynamics (CFD) predictions and non-destructive survey of fibre dispersion with failure modes. Engineering Structures, 133, 151–171.
go back to reference Ferrara, L. (2014). Fibre reinforced SCC. In Mechanical Properties of Self-Compacting Concrete. State of the Art Report of the RILEM Technical Committee 228-MPS on Mechanical Properties of SCC, K.H. Khayat and Geert de Schutter, eds. (Chapter 6), pp. 161–220, Springer, 2014, ISBN 978–3–319–03244–3. Ferrara, L. (2014). Fibre reinforced SCC. In Mechanical Properties of Self-Compacting Concrete. State of the Art Report of the RILEM Technical Committee 228-MPS on Mechanical Properties of SCC, K.H. Khayat and Geert de Schutter, eds. (Chapter 6), pp. 161–220, Springer, 2014, ISBN 978–3–319–03244–3.
go back to reference Ferrara, L., Park, Y. D., Shah, S. P. (2007). A method for mix-design of fibre reinforced self compacting concrete. Cement and Concrete Research, 37, 957–971. Ferrara, L., Park, Y. D., Shah, S. P. (2007). A method for mix-design of fibre reinforced self compacting concrete. Cement and Concrete Research, 37, 957–971.
go back to reference Figuereido, S. C., Romero Rodruiguez, C., Ahmed, Z. Y., Bos, D. H., Xu. Y., Salet, T. M., Copuroglu, O., Schlangen, E., and Bos, F. P. (2019). 2An approach to develop printable strain hardening cementitious composites. Materials and Design, 169, 107651. Figuereido, S. C., Romero Rodruiguez, C., Ahmed, Z. Y., Bos, D. H., Xu. Y., Salet, T. M., Copuroglu, O., Schlangen, E., and Bos, F. P. (2019). 2An approach to develop printable strain hardening cementitious composites. Materials and Design, 169, 107651.
go back to reference fib Model Code 2010 – 2 vol. Bulletin 55 and 56. fib Model Code 2010 – 2 vol. Bulletin 55 and 56.
go back to reference FIB. (2010). fib Model Code for Concrete Structures. Ernst & Sohn, October 2013. ISBN: 978–3–433–03061–5. FIB. (2010). fib Model Code for Concrete Structures. Ernst & Sohn, October 2013. ISBN: 978–3–433–03061–5.
go back to reference Fromm, Asko, Schein, Markus, Grohmann. (2017). Manfred: Reinforcement of Additive Manufactured Concrete Elements. In: Bögle, A., Grohmann, M., (Eds.), Proceedings of the IASS Annual Symposium 2017 September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.). Interfaces: architecture. Engineering. Science 25 - 28th; 2017. Fromm, Asko, Schein, Markus, Grohmann. (2017). Manfred: Reinforcement of Additive Manufactured Concrete Elements. In: Bögle, A., Grohmann, M., (Eds.), Proceedings of the IASS Annual Symposium 2017 September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.). Interfaces: architecture. Engineering. Science 25 - 28th; 2017.
go back to reference Hambach, M., and Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70. Hambach, M., and Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70.
go back to reference Kuder, K. G., and Shah, S. P. (2003). Effects of pressure on resistance to freezing and thawing of fiber-reinforced cement board. ACI Mater J, 100(6), 463–468. Kuder, K. G., and Shah, S. P. (2003). Effects of pressure on resistance to freezing and thawing of fiber-reinforced cement board. ACI Mater J, 100(6), 463–468.
go back to reference Kuder, K. G., and Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24, 181–186. Kuder, K. G., and Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24, 181–186.
go back to reference Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42, 558–566. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42, 558–566.
go back to reference Labonette, N., Rønnquist, A., Manum, B., and Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72(3), 347–366. Labonette, N., Rønnquist, A., Manum, B., and Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72(3), 347–366.
go back to reference Lloret-Fritschi, E., Scotto, F., Gramazio, F., Kohler, M., Graser, K., Wangler, T., Reiter, L., Flatt, R.J., and Mata-Falcón, J. (2019). Challenges of Real-Scale Production with Smart Dynamic Casting. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 299–310. Lloret-Fritschi, E., Scotto, F., Gramazio, F., Kohler, M., Graser, K., Wangler, T., Reiter, L., Flatt, R.J., and Mata-Falcón, J. (2019). Challenges of Real-Scale Production with Smart Dynamic Casting. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 299–310.
go back to reference Martinie, L., Rossi, P., and Roussel, N. (2010). Rheology of fibre reinforced cementitious materials: classifications and prediction. Cement and Concrete Research, 40, 226–240. Martinie, L., Rossi, P., and Roussel, N. (2010). Rheology of fibre reinforced cementitious materials: classifications and prediction. Cement and Concrete Research, 40, 226–240.
go back to reference Martinie, L., and Roussel, N. (2011). Simple tools for fibre orientation prediction in industrial practice. Cement and Concrete Research, 41, 993-1000. Martinie, L., and Roussel, N. (2011). Simple tools for fibre orientation prediction in industrial practice. Cement and Concrete Research, 41, 993-1000.
go back to reference Marti, P. (1985). Truss models in detailing. Concrete International, 7(12), 66–73. Marti, P. (1985). Truss models in detailing. Concrete International, 7(12), 66–73.
go back to reference Martens, P., Mathot, M., Bos, F. P., and Coenders, J. (2017). Optimising 3D printed concrete structures using topology optimisation. High Tech Concrete: where technology and engineering meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12–14, 2017. Hordijk, D. A., and Luković, M. (eds.). Cham: Springer, pp. 301–309 9. Martens, P., Mathot, M., Bos, F. P., and Coenders, J. (2017). Optimising 3D printed concrete structures using topology optimisation. High Tech Concrete: where technology and engineering meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12–14, 2017. Hordijk, D. A., and Luković, M. (eds.). Cham: Springer, pp. 301–309 9.
go back to reference Martens, P. (2018). Optimising 3D Printed Concrete Structures: Concrete additive manufacturing and topology optimisation, MSc graduation thesis, TU Delft, the Netherlands. Martens, P. (2018). Optimising 3D Printed Concrete Structures: Concrete additive manufacturing and topology optimisation, MSc graduation thesis, TU Delft, the Netherlands.
go back to reference Model Code 2010 - Final draft, Vol 1. (350 pp, ISBN 978–2–88394–105–2, March 2012). Model Code 2010 - Final draft, Vol 1. (350 pp, ISBN 978–2–88394–105–2, March 2012).
go back to reference Marchment, T., Xia, M., Dodd, E., Sanjayan, J., and Nematollahi, B. (2017). Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In 34th International Symposium on Automation and Robotics in Construction. Marchment, T., Xia, M., Dodd, E., Sanjayan, J., and Nematollahi, B. (2017). Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In 34th International Symposium on Automation and Robotics in Construction.
go back to reference Nerella, V. N., Ogura, H., and Mechtcherine, V. (2018 July). Incorporating reinforcement into digital concrete construction. Proceeding of the annual Symposium of the IASS—International Association for Shell and Spatial Structures: Creativity in Structural Design, July 2018, MIT, Boston. Nerella, V. N., Ogura, H., and Mechtcherine, V. (2018 July). Incorporating reinforcement into digital concrete construction. Proceeding of the annual Symposium of the IASS—International Association for Shell and Spatial Structures: Creativity in Structural Design, July 2018, MIT, Boston.
go back to reference Nerella, V. M., Krause, M., Näther, M., and Mechtcherine, V. (2016). Studying printability of fresh concrete for formwork free Concrete onsite 3D Printing technology (CONPrint3D). In Proceeding for the 25th Conference on Rheology of Building Materials, Regensburg, Germany. Nerella, V. M., Krause, M., Näther, M., and Mechtcherine, V. (2016). Studying printability of fresh concrete for formwork free Concrete onsite 3D Printing technology (CONPrint3D). In Proceeding for the 25th Conference on Rheology of Building Materials, Regensburg, Germany.
go back to reference Panda, B., Noor Mohamed, N. A., Tay, Y. W. D., and Tan, M. J. (2019). Bond Strength in 3D Printed Geopolymer Mortar. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018. Springer International Publishing, pp. 200–206. Panda, B., Noor Mohamed, N. A., Tay, Y. W. D., and Tan, M. J. (2019). Bond Strength in 3D Printed Geopolymer Mortar. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018. Springer International Publishing, pp. 200–206.
go back to reference Panda, B., Paul, S. V., and Tan, M. J. (2017). Anisotropic mechanical performance of 3D printed fibre reinforced sustainable construction material. Materials Letters, 2019, 146–149. Panda, B., Paul, S. V., and Tan, M. J. (2017). Anisotropic mechanical performance of 3D printed fibre reinforced sustainable construction material. Materials Letters, 2019, 146–149.
go back to reference Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., and Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116. Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., and Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116.
go back to reference Paul, S. C., Y. W. D. Tay, P. B., and Tan, M. J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18, 311–319. Paul, S. C., Y. W. D. Tay, P. B., and Tan, M. J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18, 311–319.
go back to reference Peled, A., Cyr, M., and Shah, S. P. (2000). High content of fly ash (Class F) in extruded ementitious composites. ACI Mater J, 97(5), 509–517. Peled, A., Cyr, M., and Shah, S. P. (2000). High content of fly ash (Class F) in extruded ementitious composites. ACI Mater J, 97(5), 509–517.
go back to reference Peled, A., and Shah, S. P. (2003). Processing effects in cementitious composites: extrusion and casting. J Mater Civil Eng, 15(2), 192–199. Peled, A., and Shah, S. P. (2003). Processing effects in cementitious composites: extrusion and casting. J Mater Civil Eng, 15(2), 192–199.
go back to reference Rosanna Napolitano, Costantino Menna, Domenico Asprone, Lorenzo del Giudice. Experimental and numerical assessment of the interface behaviour of 3D Printed concrete elements w/wo interlaminar reinforcement. Cement and concrete composites (submitted). Rosanna Napolitano, Costantino Menna, Domenico Asprone, Lorenzo del Giudice. Experimental and numerical assessment of the interface behaviour of 3D Printed concrete elements w/wo interlaminar reinforcement. Cement and concrete composites (submitted).
go back to reference Radtke, F. K. F., Simone, A., Sluys, L. J. (2010). A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engineering Fracture Mechanics, 77(4), 597–620. Radtke, F. K. F., Simone, A., Sluys, L. J. (2010). A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engineering Fracture Mechanics, 77(4), 597–620.
go back to reference Radtke, F. K. F., Simone, A., and Sluys, L. J. (2011). A partition of unity finite element method for simulating non‐linear debonding and matrix failure in thin fibre composites. International Journal for Numerical Methods in Engineering, 86(4-5), 453–476. Radtke, F. K. F., Simone, A., and Sluys, L. J. (2011). A partition of unity finite element method for simulating non‐linear debonding and matrix failure in thin fibre composites. International Journal for Numerical Methods in Engineering, 86(4-5), 453–476.
go back to reference Salet, T. A. M., and Fietsbrug Nijmegen. (2019). Protocol voor de veiligheid van een voorgespannen geprinte betonnen fiets- en voetgangersbrug, [rapport ref number to be added], for Rijkswaterstaat. Eindhoven University of Technology, Netherlands. Salet, T. A. M., and Fietsbrug Nijmegen. (2019). Protocol voor de veiligheid van een voorgespannen geprinte betonnen fiets- en voetgangersbrug, [rapport ref number to be added], for Rijkswaterstaat. Eindhoven University of Technology, Netherlands.
go back to reference Soltan, D. G., and Li, V. C. (2018). A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, 90, 1–13. Soltan, D. G., and Li, V. C. (2018). A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites, 90, 1–13.
go back to reference Soetens, T., and Matthys, S. (2014). Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Construction and Building Materials, 73, 458–471. Soetens, T., and Matthys, S. (2014). Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Construction and Building Materials, 73, 458–471.
go back to reference Schlaich, J., Schäfer, K., and Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74–150. Schlaich, J., Schäfer, K., and Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74–150.
go back to reference Stefanoni, M., Angst, U., and Elsener, B. (2019). Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 225–233. Stefanoni, M., Angst, U., and Elsener, B. (2019). Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 225–233.
go back to reference Schröfl, C., Nerella, V. N., and Mechtcherine, V. (2019). Capillary Water Intake by 3D-Printed Concrete Visualised and Quantified by Neutron Radiography. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 217–224. Schröfl, C., Nerella, V. N., and Mechtcherine, V. (2019). Capillary Water Intake by 3D-Printed Concrete Visualised and Quantified by Neutron Radiography. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr. – Digit. Concr. 2018, Springer International Publishing, pp. 217–224.
go back to reference Srinivasan, S., Deford, D., and Shah, P. (1999). The use of extrusion rheometry in the development of extrudate fibre-reinforced cement composites. Concrete Science and Engineering, 1(11), 26–36. Srinivasan, S., Deford, D., and Shah, P. (1999). The use of extrusion rheometry in the development of extrudate fibre-reinforced cement composites. Concrete Science and Engineering, 1(11), 26–36.
go back to reference Vantyghem, G., De Corte, W., Shakour, E., and Amir, O. (2019). Topology optimization and 3D printing of a post-tensioned concrete girder, submitted (under review). Vantyghem, G., De Corte, W., Shakour, E., and Amir, O. (2019). Topology optimization and 3D printing of a post-tensioned concrete girder, submitted (under review).
go back to reference Van Der Putten, J., De Schutter, G., and Van Tittelboom, K. (2019). The Effect of Print Parameters on the (Micro) structure of 3D Printed Cementitious Materials. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr.—Digit. Concr. 2018, Springer International Publishing, pp. 234–244. Van Der Putten, J., De Schutter, G., and Van Tittelboom, K. (2019). The Effect of Print Parameters on the (Micro) structure of 3D Printed Cementitious Materials. In: T. Wangler, and R. J. Flatt (Eds.), First RILEM Int. Conf. Concr. Digit. Fabr.—Digit. Concr. 2018, Springer International Publishing, pp. 234–244.
go back to reference Zhou, X., and Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and Structures, 38, 17–24. Zhou, X., and Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and Structures, 38, 17–24.
go back to reference Zhan, Y., and Meschke, G. (2016). Multilevel computational model for failure analysis of steel-fibre–reinforced concrete structures. J. Eng. Mech. ASCE, 142(11), 1–14. Zhan, Y., and Meschke, G. (2016). Multilevel computational model for failure analysis of steel-fibre–reinforced concrete structures. J. Eng. Mech. ASCE, 142(11), 1–14.
go back to reference Zareiyan, B., and Khoshnevish, B. (2017). Interlayer adhesion and strength of structures in Contour Crafting—Effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction, 81, 112–121. Zareiyan, B., and Khoshnevish, B. (2017). Interlayer adhesion and strength of structures in Contour Crafting—Effects of aggregate size, extrusion rate, and layer thickness. Automation in Construction, 81, 112–121.
go back to reference Zahabizadeh, B., Cunha, V. M. C. F., Pereira, J., and Gonçalves, C (2019). The effect of loading direction on the compressive behaviour of a 3D printed cement-based material. In IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management, pp. 1658–1665. Zahabizadeh, B., Cunha, V. M. C. F., Pereira, J., and Gonçalves, C (2019). The effect of loading direction on the compressive behaviour of a 3D printed cement-based material. In IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management, pp. 1658–1665.
Metadata
Title
Structural Design and Testing of Digitally Manufactured Concrete Structures
Authors
Domenico Asprone
Costantino Menna
Freek Bos
Jaime Mata-Falcón
Liberato Ferrara
Ferdinando Auricchio
Ezio Cadoni
Vítor M. C. F. Cunha
Laura Esposito
Asko Fromm
Steffen Grünewald
Harald Kloft
Viktor Mechtcherine
Venkatesh Naidu Nerella
Roel Schipper
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90535-4_6