Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2022

02-11-2021

Structural Elucidation, Morphological Properties, and Dielectric Properties of Nickel-Substituted Cobalt and Lead-Based X-Type Hexagonal Ferrites

Authors: Muhammad Wajad, Hasan M. Khan, Abdul Waheed, Muhammad Zahid, Muhammad Misbah Ur Rehman, Mohammad Hussein, Muhammad Ehsan Mazhar, Muhammad Nauman Usmani, Muhammad Imran Khan

Published in: Journal of Materials Engineering and Performance | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, sol-gel auto-combustion technique was employed to synthesize Pb2Co2-xNixFe28O46(x = 0.0, 0.4, 0.8, 1.2, 1.6, and 2) X-type hexagonal ferrites. Annealing of the samples was done at 1050 °C for 10 h. Formation of the X-type hexaferrites phase was confirmed by the XRD technique. Scanning electron microscopy was used to observe the morphology of the prepared samples. Crystallite size ranges from 15.40 to 10.10 nm. The unit cell volume was measured in the range of (2497.5-2514.1) \(\text{\AA}\). The cell volume and the lattice constants changed due to the difference in radii of the base and doping element. Distortion parameter (g) and dislocation density (δ) varied directly to site vacancies in the layers and the reordering of the lattice atoms during the transformation process. FTIR spectrum revealed the presence of particular absorption bands (metal-oxygen stretching vibration) which also confirmed the formation of hexagonal ferrites, and it was recorded in the range 600-4000 \({\mathrm{cm}}^{-1}\). Dielectric parameters exhibit frequency-dependent behavior. The dielectric constant (ɛ′), dielectric loss (ɛ″), and tan loss (tanδ) decreased abruptly at low frequency and then remained invariant up to 1.5 MHz. The higher values of the dielectric parameters recommend fabricated material a potential candidate for high-frequency applications. Dielectric constant and Q-value were found to increase with the increase in Ni content. All the samples revealed resonance peaks above 1.9 GHz which indicates the potential use of the material for EMI attenuation. The optimized dielectric nature of the prepared hexaferrites suggests the material to be useful in the manufacturing of multilayer chip inductors (MLCIs).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Majeed et al., Morphological, Raman, Electrical and Dielectric Properties of Rare Earth Doped X-type Hexagonal Ferrites, Phys. B, 2016, 503, p 38–43. CrossRef A. Majeed et al., Morphological, Raman, Electrical and Dielectric Properties of Rare Earth Doped X-type Hexagonal Ferrites, Phys. B, 2016, 503, p 38–43. CrossRef
2.
go back to reference A. Majeed et al., Structural, Microwave Permittivity, and Complex Impedance Studies of Cation (Cr, Bi, Al, In) Substituted SrNi-X Hexagonal Nano-sized Ferrites, Ceram. Int., 2020, 46(2), p 1907–1915. CrossRef A. Majeed et al., Structural, Microwave Permittivity, and Complex Impedance Studies of Cation (Cr, Bi, Al, In) Substituted SrNi-X Hexagonal Nano-sized Ferrites, Ceram. Int., 2020, 46(2), p 1907–1915. CrossRef
3.
go back to reference X.Z. MeixiaWu, M. Croft, S. Ehrlich, S. Khalid, W. Wen, S.H. Lapidus, X. Xianghan, M.-R. Li, Z. Liu and S.-W. Cheong, Single-Crystal Growth and Room-Temperature Magnetocaloric Effect of X-Type Hexaferrite Sr2Co2Fe28O46, Inorg. Chem., 2020, 59(10), p 6755. CrossRef X.Z. MeixiaWu, M. Croft, S. Ehrlich, S. Khalid, W. Wen, S.H. Lapidus, X. Xianghan, M.-R. Li, Z. Liu and S.-W. Cheong, Single-Crystal Growth and Room-Temperature Magnetocaloric Effect of X-Type Hexaferrite Sr2Co2Fe28O46, Inorg. Chem., 2020, 59(10), p 6755. CrossRef
4.
go back to reference M. Zareen et al., Influence of Ce-Mn Substitution on Dielectric and Magnetic Properties of Strontium Based X-type Hexaferrites, J. Magn. Magn. Mater., 2020, 497, p 165943. CrossRef M. Zareen et al., Influence of Ce-Mn Substitution on Dielectric and Magnetic Properties of Strontium Based X-type Hexaferrites, J. Magn. Magn. Mater., 2020, 497, p 165943. CrossRef
5.
go back to reference M. Zahid et al., Enhanced Structural and Dielectric Properties of Calcium and Chromium Based M-type Hexagonal Ferrites, J. Mater. Sci.: Mater. Electron., 2021, 32(7), p 9183–9193. M. Zahid et al., Enhanced Structural and Dielectric Properties of Calcium and Chromium Based M-type Hexagonal Ferrites, J. Mater. Sci.: Mater. Electron., 2021, 32(7), p 9183–9193.
6.
go back to reference H.M. Khan et al., Effect of Binary Mixture of Nd–Zn Ions on the Electrical, Structural and Dielectric Behavior of Calcium-Barium M-type Hexaferrite Nanoparticles, Indian J. Phys., 2021, 95(5), p 871–879. CrossRef H.M. Khan et al., Effect of Binary Mixture of Nd–Zn Ions on the Electrical, Structural and Dielectric Behavior of Calcium-Barium M-type Hexaferrite Nanoparticles, Indian J. Phys., 2021, 95(5), p 871–879. CrossRef
7.
go back to reference R.C. Alange et al., Structural, Magnetic and Dielectrical Properties of Al–Cr Co-Substituted M-type Barium Hexaferrite Nanoparticles, J. Mol. Struct., 2016, 1106, p 460–467. CrossRef R.C. Alange et al., Structural, Magnetic and Dielectrical Properties of Al–Cr Co-Substituted M-type Barium Hexaferrite Nanoparticles, J. Mol. Struct., 2016, 1106, p 460–467. CrossRef
8.
go back to reference R.C. Alange, P.P. Khirade, S.D. Birajdar and K.M. Jadhav, Influence of Al–Cr co-Substitution on Physical Properties of Strontium Hexaferrite Nanoparticles Synthesized by Sol–Gel Auto Combustion Method, J. Mater. Sci. Mater Electron., 2017, 28, p 407–417. CrossRef R.C. Alange, P.P. Khirade, S.D. Birajdar and K.M. Jadhav, Influence of Al–Cr co-Substitution on Physical Properties of Strontium Hexaferrite Nanoparticles Synthesized by Sol–Gel Auto Combustion Method, J. Mater. Sci. Mater Electron., 2017, 28, p 407–417. CrossRef
9.
go back to reference R.C. Pullar and A.K. Bhattacharya, Crystallisation of Hexagonal M Ferrites from a Stoichiometric Sol–Gel Precursor, Without Formation of the α-BaFe2O4 Intermediate Phase, Mater. Lett., 2002, 57(3), p 537–542. CrossRef R.C. Pullar and A.K. Bhattacharya, Crystallisation of Hexagonal M Ferrites from a Stoichiometric Sol–Gel Precursor, Without Formation of the α-BaFe2O4 Intermediate Phase, Mater. Lett., 2002, 57(3), p 537–542. CrossRef
10.
go back to reference M.K. Dmour et al., Preparation and Characterization of Rare Earth-Zinc Substituted X-type Hexaferrites, J. Alloy. Compd., 2020, 836, p 155396. CrossRef M.K. Dmour et al., Preparation and Characterization of Rare Earth-Zinc Substituted X-type Hexaferrites, J. Alloy. Compd., 2020, 836, p 155396. CrossRef
11.
go back to reference S.R. Ejaz et al., Study of Structural Transformation and Hysteresis Behavior of Mg-Sr Substituted X-type Hexaferrites, Ceram. Int., 2018, 44(15), p 18903–18912. CrossRef S.R. Ejaz et al., Study of Structural Transformation and Hysteresis Behavior of Mg-Sr Substituted X-type Hexaferrites, Ceram. Int., 2018, 44(15), p 18903–18912. CrossRef
12.
go back to reference Z. Haijun, Y. Xi and Z. Liangying, The Preparation and Microwave Properties of Ba2ZnxCo2−xFe28O46 Hexaferrites, J. Magn. Magn. Mater., 2002, 241(2), p 441–446. CrossRef Z. Haijun, Y. Xi and Z. Liangying, The Preparation and Microwave Properties of Ba2ZnxCo2−xFe28O46 Hexaferrites, J. Magn. Magn. Mater., 2002, 241(2), p 441–446. CrossRef
13.
go back to reference M. Hakimi, P. Alimard and M. Yousefi, Green Synthesis of Reduced Graphene Oxide/Sr2CuMgFe28O46 Nanocomposite with Tunable Magnetic Properties, Ceram. Int., 2014, 40, p 11957–11961. CrossRef M. Hakimi, P. Alimard and M. Yousefi, Green Synthesis of Reduced Graphene Oxide/Sr2CuMgFe28O46 Nanocomposite with Tunable Magnetic Properties, Ceram. Int., 2014, 40, p 11957–11961. CrossRef
14.
go back to reference Z. Haijun et al., Dielectric and Magnetic Properties of ZnCo-Substituted X Hexaferrites Prepared by Citrate Sol–Gel Process, Mater. Res. Bull., 2003, 38(2), p 363–372. CrossRef Z. Haijun et al., Dielectric and Magnetic Properties of ZnCo-Substituted X Hexaferrites Prepared by Citrate Sol–Gel Process, Mater. Res. Bull., 2003, 38(2), p 363–372. CrossRef
15.
go back to reference T.H. Mubarak, O.A. Mahmood and Z.J. Hamakhan, Structural, Magnetic and Electrical Properties of Ba2Mg2Fe28O46 (Mg2X) hexaferrites, Int. J. Appl. Eng. Res., 2018, 13(08), p 6369. T.H. Mubarak, O.A. Mahmood and Z.J. Hamakhan, Structural, Magnetic and Electrical Properties of Ba2Mg2Fe28O46 (Mg2X) hexaferrites, Int. J. Appl. Eng. Res., 2018, 13(08), p 6369.
16.
go back to reference Y. Yang et al., Synthesis of Nonstoichiometric Zinc Ferrite Nanoparticles with Extraordinary Room Temperature Magnetism and Their Diverse Applications, J. Mater. Chem. C, 2013, 1(16), p 2875–2885. CrossRef Y. Yang et al., Synthesis of Nonstoichiometric Zinc Ferrite Nanoparticles with Extraordinary Room Temperature Magnetism and Their Diverse Applications, J. Mater. Chem. C, 2013, 1(16), p 2875–2885. CrossRef
17.
go back to reference A.S. Džunuzović et al., Structure and Properties of Ni–Zn Ferrite Obtained by Auto-combustion Method, J. Magn. Magn. Mater., 2015, 374, p 245–251. CrossRef A.S. Džunuzović et al., Structure and Properties of Ni–Zn Ferrite Obtained by Auto-combustion Method, J. Magn. Magn. Mater., 2015, 374, p 245–251. CrossRef
18.
go back to reference I. Sadiq et al., Structural, Infrared, Magnetic and Microwave Absorption Properties of Rare Earth Doped X-type Hexagonal Nanoferrites, J. Alloy. Compd., 2013, 570, p 7–13. CrossRef I. Sadiq et al., Structural, Infrared, Magnetic and Microwave Absorption Properties of Rare Earth Doped X-type Hexagonal Nanoferrites, J. Alloy. Compd., 2013, 570, p 7–13. CrossRef
19.
go back to reference I. Sadiq et al., Influence of Nd-Co Substitution on Structural, Electrical, and Dielectric Properties of X-Type Hexagonal Nanoferrites, J. Mater. Eng. Perform., 2014, 23(2), p 622–627. CrossRef I. Sadiq et al., Influence of Nd-Co Substitution on Structural, Electrical, and Dielectric Properties of X-Type Hexagonal Nanoferrites, J. Mater. Eng. Perform., 2014, 23(2), p 622–627. CrossRef
20.
go back to reference M. Azhar Khan et al., Structural Elucidation and Magnetic Behavior Evaluation of Cu-Cr Doped BaCo-X Hexagonal Ferrites, J. Magn. Magn. Mater., 2018, 452, p 73–79. CrossRef M. Azhar Khan et al., Structural Elucidation and Magnetic Behavior Evaluation of Cu-Cr Doped BaCo-X Hexagonal Ferrites, J. Magn. Magn. Mater., 2018, 452, p 73–79. CrossRef
21.
go back to reference H.M. Khan et al., “Electrical transport properties and temperature dependent magnetization behavior of TbZn substituted Ca0.5Ba0.5Fe12O19 hexaferrites,” J Sol-Gel Sci Technol., 2016, 78(1), p 151–158.CrossRef H.M. Khan et al., “Electrical transport properties and temperature dependent magnetization behavior of TbZn substituted Ca0.5Ba0.5Fe12O19 hexaferrites,” J Sol-Gel Sci Technol., 2016, 78(1), p 151–158.CrossRef
22.
go back to reference F. Ur Raheem et al., Structural, Spectral, Electrical, Dielectric and Magnetic Properties of Yb Doped SrNiCo-X Hexagonal Nano-structured Ferrites, J. Alloy. Compd., 2017, 708, p 903–910. CrossRef F. Ur Raheem et al., Structural, Spectral, Electrical, Dielectric and Magnetic Properties of Yb Doped SrNiCo-X Hexagonal Nano-structured Ferrites, J. Alloy. Compd., 2017, 708, p 903–910. CrossRef
23.
go back to reference A.R. Kagdi et al., Influence of Mg Substitution on Structural, Magnetic and Dielectric Properties of X-type Bariumzinc Hexaferrites Ba2Zn2-xMgxFe28O46, J. Alloy. Compd., 2018, 741, p 377–391. CrossRef A.R. Kagdi et al., Influence of Mg Substitution on Structural, Magnetic and Dielectric Properties of X-type Bariumzinc Hexaferrites Ba2Zn2-xMgxFe28O46, J. Alloy. Compd., 2018, 741, p 377–391. CrossRef
24.
go back to reference M.Y. Lodhi et al., Role of Nd-Ni on Structural, Spectral and Dielectric Properties of Strontium-Barium Based Nano-sized X-type Ferrites, Ceram. Int., 2018, 44(3), p 2968–2975. CrossRef M.Y. Lodhi et al., Role of Nd-Ni on Structural, Spectral and Dielectric Properties of Strontium-Barium Based Nano-sized X-type Ferrites, Ceram. Int., 2018, 44(3), p 2968–2975. CrossRef
25.
go back to reference A. Majeed et al., Influence of Cr and Zn Substitution on Structural, Magnetic and Dielectric Properties of Sr2-xZnxNi2Fe28-yCryO46 X-type Hexagonal Ferrite, Solid State Sci., 2020, 100, p 106090. CrossRef A. Majeed et al., Influence of Cr and Zn Substitution on Structural, Magnetic and Dielectric Properties of Sr2-xZnxNi2Fe28-yCryO46 X-type Hexagonal Ferrite, Solid State Sci., 2020, 100, p 106090. CrossRef
26.
go back to reference W. Zhanyong et al., Microwave-assisted Synthesis of SrFe12O19 Hexaferrites, J. Magn. Magn. Mater., 2010, 322(18), p 2782–2785. CrossRef W. Zhanyong et al., Microwave-assisted Synthesis of SrFe12O19 Hexaferrites, J. Magn. Magn. Mater., 2010, 322(18), p 2782–2785. CrossRef
27.
go back to reference J. Singh et al., Tunable Microwave Absorption in CoAl Substituted M-type BaSr Hexagonal Ferrite, Mater. Des., 2016, 110, p 749–761. CrossRef J. Singh et al., Tunable Microwave Absorption in CoAl Substituted M-type BaSr Hexagonal Ferrite, Mater. Des., 2016, 110, p 749–761. CrossRef
28.
go back to reference R.M. Almeida et al., Impedance Spectroscopy Analysis of BaFe12O19 M-type Hexaferrite Obtained by Ceramic Method, Ceram. Int., 2009, 35(6), p 2443–2447. CrossRef R.M. Almeida et al., Impedance Spectroscopy Analysis of BaFe12O19 M-type Hexaferrite Obtained by Ceramic Method, Ceram. Int., 2009, 35(6), p 2443–2447. CrossRef
29.
go back to reference G. Benito et al., Barium Hexaferrite Monodispersed Nanoparticles Prepared by the Ceramic Method, J. Magn. Magn. Mater., 2001, 234(1), p 65–72. CrossRef G. Benito et al., Barium Hexaferrite Monodispersed Nanoparticles Prepared by the Ceramic Method, J. Magn. Magn. Mater., 2001, 234(1), p 65–72. CrossRef
30.
go back to reference Kumar K. Vijaya and D. Ravinder, Electrical Conductivity of Ni–Zn–Gd Ferrites, Mater. Lett., 2002, 52(3), p 166–168. CrossRef Kumar K. Vijaya and D. Ravinder, Electrical Conductivity of Ni–Zn–Gd Ferrites, Mater. Lett., 2002, 52(3), p 166–168. CrossRef
31.
go back to reference S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko and L.Y. Matzui, Investigation into the Structural Features and Microwave Absorption of Doped Barium Hexaferrites, R. Soc. Chem., 2017, 46, p 9010. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko and L.Y. Matzui, Investigation into the Structural Features and Microwave Absorption of Doped Barium Hexaferrites, R. Soc. Chem., 2017, 46, p 9010.
32.
go back to reference N. Fatima et al., Digest. Dig. J. Nanomater. Biostructures, 2021, 16(1), p. 93–100. N. Fatima et al., Digest. Dig. J. Nanomater. Biostructures, 2021, 16(1), p. 93–100.
33.
go back to reference R.B. Jotania et al., Synthesis and Magnetic Properties of Barium–Calcium Hexaferrite Particles Prepared by Sol–Gel and Microemulsion Techniques, J. Magn. Magn. Mater., 2008, 320(6), p 1095–1101. CrossRef R.B. Jotania et al., Synthesis and Magnetic Properties of Barium–Calcium Hexaferrite Particles Prepared by Sol–Gel and Microemulsion Techniques, J. Magn. Magn. Mater., 2008, 320(6), p 1095–1101. CrossRef
34.
go back to reference H. M. Khan et al., J. Ovonic Res., 2020, 16(5), p. 281–291. H. M. Khan et al.,  J. Ovonic Res., 2020, 16(5), p. 281–291.
35.
go back to reference C. Chen et al., Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites, J. Cryst. Growth, 2006, 291(1), p 135–139. CrossRef C. Chen et al., Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites, J. Cryst. Growth, 2006, 291(1), p 135–139. CrossRef
36.
go back to reference M.B. Reddy and P.V. Reddy, Cation Distribution of LiTi Mixed Ferrites, J. Appl. Phys., 1994, 75(10), p 6125. CrossRef M.B. Reddy and P.V. Reddy, Cation Distribution of LiTi Mixed Ferrites, J. Appl. Phys., 1994, 75(10), p 6125. CrossRef
37.
go back to reference T. Gupta et al., Investigation on Structural, Hysteresis, Mössbauer Properties and Electrical Parameters of Lightly Erbium Substituted X-type Ba2Co2ErxFe28-xO46 Hexaferrites, Ceram. Int., 2020, 46(6), p 8209–8226. CrossRef T. Gupta et al., Investigation on Structural, Hysteresis, Mössbauer Properties and Electrical Parameters of Lightly Erbium Substituted X-type Ba2Co2ErxFe28-xO46 Hexaferrites, Ceram. Int., 2020, 46(6), p 8209–8226. CrossRef
38.
go back to reference A.S. Vanetsev, V.K. Ivanov and Y.D. Tret’yakov, Microwave Synthesis of Lithium, Copper, Cobalt and Nickel Ferrites, Doklady Chemistry, 2002, 387, p 332. CrossRef A.S. Vanetsev, V.K. Ivanov and Y.D. Tret’yakov, Microwave Synthesis of Lithium, Copper, Cobalt and Nickel Ferrites, Doklady Chemistry, 2002, 387, p 332. CrossRef
39.
go back to reference D. Ravinder and P. Vijaya Bhasker Reddy, High-Frequency Dielectric Behaviour of Li–Mg Ferrites, Mater. Lett., 2003, 57(26), p 4344–4350. CrossRef D. Ravinder and P. Vijaya Bhasker Reddy, High-Frequency Dielectric Behaviour of Li–Mg Ferrites, Mater. Lett., 2003, 57(26), p 4344–4350. CrossRef
40.
go back to reference N. Rezlescu and E. Rezlescu, Dielectric Properties of Copper Containing Ferrites, Phys. Stat. Solidi A., 1974, 23, p 575. CrossRef N. Rezlescu and E. Rezlescu, Dielectric Properties of Copper Containing Ferrites, Phys. Stat. Solidi A., 1974, 23, p 575. CrossRef
41.
go back to reference P. Singh et al., Dielectric Constant, Magnetic Permeability and Microwave Absorption Studies of Hot-pressed Ba-CoTi Hexaferrite Composites in X-band, J. Mater. Sci., 2006, 41(21), p 7190–7196. CrossRef P. Singh et al., Dielectric Constant, Magnetic Permeability and Microwave Absorption Studies of Hot-pressed Ba-CoTi Hexaferrite Composites in X-band, J. Mater. Sci., 2006, 41(21), p 7190–7196. CrossRef
42.
go back to reference M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad and M. Ishfaq, SEM, FTIR and Dielectric Properties of Cobalt Substituted Spinel Ferrites, J. Ovonic Res., 2015, 11(01), p 1–10. M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad and M. Ishfaq, SEM, FTIR and Dielectric Properties of Cobalt Substituted Spinel Ferrites, J. Ovonic Res., 2015, 11(01), p 1–10.
43.
go back to reference S. Mahalakshmi et al., Magnetic Studies of Nickel Ferrite Doped with Rare Earth Ions, Russ. J. Phys. Chem. A, 2013, 87(11), p 1938–1939. CrossRef S. Mahalakshmi et al., Magnetic Studies of Nickel Ferrite Doped with Rare Earth Ions, Russ. J. Phys. Chem. A, 2013, 87(11), p 1938–1939. CrossRef
44.
go back to reference H.M. Khan et al., “Structural and Magnetic Properties of Pr-Ni Substituted Ca0.5Ba0.5Fe12O19 hexa-ferrite Nanoparticles,” Ceramics International, 2014, 40(5), p 6487–6493. H.M. Khan et al., “Structural and Magnetic Properties of Pr-Ni Substituted Ca0.5Ba0.5Fe12O19 hexa-ferrite Nanoparticles,” Ceramics International, 2014, 40(5), p 6487–6493.
45.
go back to reference S. Karmakar and D. Behera, Non-overlapping Small Polaron Tunneling Conduction Coupled Dielectric Relaxation in Weak Ferromagnetic NiAl2O4, J. Phys. Condensed Matter., 2019, 31(24), p 245701. CrossRef S. Karmakar and D. Behera, Non-overlapping Small Polaron Tunneling Conduction Coupled Dielectric Relaxation in Weak Ferromagnetic NiAl2O4, J. Phys. Condensed Matter., 2019, 31(24), p 245701. CrossRef
46.
go back to reference M. Zahid et al., J. Mater. Sci. Mater. Electron, 2021, 32, p 9183–9193. M. Zahid et al., J. Mater. Sci. Mater. Electron, 2021, 32, p 9183–9193.
47.
go back to reference M.N. Ashiq, M. Javed Iqbal and I. Hussain Gul, Effect of Al–Cr Doping on the Structural, Magnetic and Dielectric Properties of Strontium Hexaferrite Nanomaterials, J. Magn. Magn. Mater., 2011, 323(3), p 259–263. CrossRef M.N. Ashiq, M. Javed Iqbal and I. Hussain Gul, Effect of Al–Cr Doping on the Structural, Magnetic and Dielectric Properties of Strontium Hexaferrite Nanomaterials, J. Magn. Magn. Mater., 2011, 323(3), p 259–263. CrossRef
48.
go back to reference I. Ali et al., Effect of Eu–Ni Substitution on Electrical and Dielectric Properties of Co–Sr–Y-type Hexagonal Ferrite, Mater. Res. Bull., 2014, 49, p 338–344. CrossRef I. Ali et al., Effect of Eu–Ni Substitution on Electrical and Dielectric Properties of Co–Sr–Y-type Hexagonal Ferrite, Mater. Res. Bull., 2014, 49, p 338–344. CrossRef
49.
go back to reference S. Karmakar et al., Dielectric Relaxation Behavior and Overlapping Large Polaron Tunneling Conduction Mechanism in NiO–PbO μ-Cauliflower Composites, J. Alloy. Compd., 2021, 851, p 156789. CrossRef S. Karmakar et al., Dielectric Relaxation Behavior and Overlapping Large Polaron Tunneling Conduction Mechanism in NiO–PbO μ-Cauliflower Composites, J. Alloy. Compd., 2021, 851, p 156789. CrossRef
50.
go back to reference H.M. Khan et al., “Structural and Magnetic Properties of TbZn-Substituted Calcium Barium M-type Nano-structured Hexa-ferrites”, J. Alloys Compd., 2014, 589(15), p 258–262. H.M. Khan et al., “Structural and Magnetic Properties of TbZn-Substituted Calcium Barium M-type Nano-structured Hexa-ferrites”, J. Alloys Compd., 2014, 589(15), p 258–262.
51.
go back to reference H.M. Khan et al., “Structural, magnetic, and microwave properties of NdZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites,” J Sol-Gel Sci Technol. 2015, 75(2), p 305–312. H.M. Khan et al., “Structural, magnetic, and microwave properties of NdZn-substituted Ca0.5Ba0.5Fe12O19  hexaferrites,” J Sol-Gel Sci Technol. 2015, 75(2), p 305–312.
52.
go back to reference A. Manzoor et al., Investigation of Structural, Dielectric and Magnetic Properties of Ho Substituted Nanostructured Lithium Ferrites Synthesized via Auto-Citric Combustion Route, J. Alloy. Compd., 2017, 710, p 547–556. CrossRef A. Manzoor et al., Investigation of Structural, Dielectric and Magnetic Properties of Ho Substituted Nanostructured Lithium Ferrites Synthesized via Auto-Citric Combustion Route, J. Alloy. Compd., 2017, 710, p 547–556. CrossRef
53.
go back to reference J. Rehman et al., Structural, Magnetic and Dielectric Properties of Terbium Doped NiCoX Strontium Hexagonal Nano-ferrites Synthesized via Micro-emulsion Route, Ceram. Int., 2016, 42(7), p 9079–9085. CrossRef J. Rehman et al., Structural, Magnetic and Dielectric Properties of Terbium Doped NiCoX Strontium Hexagonal Nano-ferrites Synthesized via Micro-emulsion Route, Ceram. Int., 2016, 42(7), p 9079–9085. CrossRef
Metadata
Title
Structural Elucidation, Morphological Properties, and Dielectric Properties of Nickel-Substituted Cobalt and Lead-Based X-Type Hexagonal Ferrites
Authors
Muhammad Wajad
Hasan M. Khan
Abdul Waheed
Muhammad Zahid
Muhammad Misbah Ur Rehman
Mohammad Hussein
Muhammad Ehsan Mazhar
Muhammad Nauman Usmani
Muhammad Imran Khan
Publication date
02-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06353-4

Other articles of this Issue 3/2022

Journal of Materials Engineering and Performance 3/2022 Go to the issue

Premium Partners