Skip to main content
Top
Published in:

12-12-2022 | Technical Article

Structural Features, Mechanical Properties, and Strengthening Behavior of SiC-Doped FeNiCoCr High-Entropy Alloys

Authors: Peijin Wang, Bo Wang, Taotao Ai, Zhifeng Deng, Zhongni Liao, Wenhu Li, Hongfeng Dong, Lizhai Zhang, Taotao Wang

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

SiC-doped equiatomic FeNiCoCr high-entropy alloys (HEAs) were prepared by vacuum hot-pressure sintering. The effects of SiC doping on the microstructure and mechanical properties of the alloys were closely studied. The results indicate that once embedded, SiC reacts with Cr to form Cr7C3 with an orthorhombic crystal structure. At a SiC doping amount of less than 5 wt.%, the yield strength and hardness of the alloys is found to be increased by 8.4 and 17.0%, respectively, relative to that for the alloys without doping, and the strengthening mechanism is mainly attributed to Cr7C3 particle strengthening. As soon as the SiC-doping amount is increased to 7.5 wt.%, the yield strength and hardness of the alloy reaches values of 891 MPa and 446 HV, respectively, which is 87.6 and 85.1% higher than that obtained for alloys without doping. The compressive strain still reaches 28.5%, with a flexural strength and fracture toughness of 915 MPa and 22.2 MPa m1/2, respectively. Si-rich particles are found to form at the grain boundaries of the HEA in the SiC7.5 alloy, and these particles are not composed of SiC but amorphous SiO2. The strengthening mechanism is attributed to thermal mismatch and Orowan strengthening due to the SiO2 particles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.Y. Gan, T.-S. Chin, T.-T. Shun, C.H. Tsau, and S.-Y. Chang, Nanostructured Higˆ Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.CrossRef J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.Y. Gan, T.-S. Chin, T.-T. Shun, C.H. Tsau, and S.-Y. Chang, Nanostructured Higˆ Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.CrossRef
2.
go back to reference J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom, 2013, 65(12), p 1759–1771.CrossRef J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom, 2013, 65(12), p 1759–1771.CrossRef
3.
go back to reference B. Cantor, Multicomponent High-Entropy Cantor Alloys, Prog. Mater. Sci., 2021, 120, p 100754.CrossRef B. Cantor, Multicomponent High-Entropy Cantor Alloys, Prog. Mater. Sci., 2021, 120, p 100754.CrossRef
4.
go back to reference B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRef
5.
go back to reference Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230.CrossRef Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230.CrossRef
6.
go back to reference P. Shi, Y.-B. Zhong, Y. Li, W. Ren, T. Zheng, Z. Shen, B. Yang, J. Peng, P. Hu, Y. Zhang, P. Liaw, and Y. Zhu, Multistage Work Hardening Assisted by Multi-Type Twinning in Ultrafine-Grained Heterostructural Eutectic High-Entropy Alloys, Mater. Today, 2020, 41, p 62–71.CrossRef P. Shi, Y.-B. Zhong, Y. Li, W. Ren, T. Zheng, Z. Shen, B. Yang, J. Peng, P. Hu, Y. Zhang, P. Liaw, and Y. Zhu, Multistage Work Hardening Assisted by Multi-Type Twinning in Ultrafine-Grained Heterostructural Eutectic High-Entropy Alloys, Mater. Today, 2020, 41, p 62–71.CrossRef
7.
go back to reference X. Lei, Y. Liu, H. Wu, S. Wang, S. Jiang, X. Wang, Y. Hui, B. Wu, and P. Gault, Kontis, Enhanced Strength and Ductility in a High-Entropy Alloy via Ordered Oxygen Complexes, Nature, 2018, 563(7732), p 546–550.CrossRef X. Lei, Y. Liu, H. Wu, S. Wang, S. Jiang, X. Wang, Y. Hui, B. Wu, and P. Gault, Kontis, Enhanced Strength and Ductility in a High-Entropy Alloy via Ordered Oxygen Complexes, Nature, 2018, 563(7732), p 546–550.CrossRef
8.
go back to reference B. Gwalani, S. Dasari, A. Sharma, V. Soni, S. Shukla, A. Jagetia, P. Agrawal, R.S. Mishra, and R. Banerjee, High Density of Strong Yet Deformable Intermetallic Nanorods Leads to an Excellent Room Temperature Strength-Ductility Combination in a High Entropy Alloy, Acta. Mater., 2021, 219, p 117234.CrossRef B. Gwalani, S. Dasari, A. Sharma, V. Soni, S. Shukla, A. Jagetia, P. Agrawal, R.S. Mishra, and R. Banerjee, High Density of Strong Yet Deformable Intermetallic Nanorods Leads to an Excellent Room Temperature Strength-Ductility Combination in a High Entropy Alloy, Acta. Mater., 2021, 219, p 117234.CrossRef
9.
go back to reference M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta. Mater., 2011, 59(16), p 6308–6317.CrossRef M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta. Mater., 2011, 59(16), p 6308–6317.CrossRef
10.
go back to reference Z. Gu, S. Xi, and C. Sun, Microstructure and Properties of Laser Cladding and CoCr2.5FeNi2Tix High-Entropy Alloy Composite Coatings, J. Alloys Compd., 2020, 819, p 152986.CrossRef Z. Gu, S. Xi, and C. Sun, Microstructure and Properties of Laser Cladding and CoCr2.5FeNi2Tix High-Entropy Alloy Composite Coatings, J. Alloys Compd., 2020, 819, p 152986.CrossRef
11.
go back to reference S. Nene, M. Frank, K. Liu, S. Sinha, R. Mishra, B. McWilliams, and K. Cho, Corrosion-Resistant High Entropy Alloy with High Strength and Ductility, Scr. Mater., 2019, 166, p 168–172.CrossRef S. Nene, M. Frank, K. Liu, S. Sinha, R. Mishra, B. McWilliams, and K. Cho, Corrosion-Resistant High Entropy Alloy with High Strength and Ductility, Scr. Mater., 2019, 166, p 168–172.CrossRef
12.
go back to reference A. Zaddach, C. Niu, C. Koch, and D. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, Jom, 2013, 65(12), p 1780–1789.CrossRef A. Zaddach, C. Niu, C. Koch, and D. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, Jom, 2013, 65(12), p 1780–1789.CrossRef
13.
go back to reference Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu, and B. Cai, Probing Deformation Mechanisms of a FeCoCrNi High-Entropy Alloy at 293 and 77 K using in situ Neutron Diffraction, Acta Mater., 2018, 154, p 79–89.CrossRef Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu, and B. Cai, Probing Deformation Mechanisms of a FeCoCrNi High-Entropy Alloy at 293 and 77 K using in situ Neutron Diffraction, Acta Mater., 2018, 154, p 79–89.CrossRef
14.
go back to reference D. Li and Y. Zhang, The Ultrahigh Charpy Impact Toughness of Forged AlxCoCrFeNi High Entropy Alloys at Room and Cryogenic Temperatures, Intermetallics, 2016, 70, p 24–28.CrossRef D. Li and Y. Zhang, The Ultrahigh Charpy Impact Toughness of Forged AlxCoCrFeNi High Entropy Alloys at Room and Cryogenic Temperatures, Intermetallics, 2016, 70, p 24–28.CrossRef
15.
go back to reference H. Jiang, K.-M. Han, D. Qiao, Y. Lu, Z. Cao, and T. Li, Effects of Ta Addition on the Microstructures and Mechanical Properties of CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 43–48.CrossRef H. Jiang, K.-M. Han, D. Qiao, Y. Lu, Z. Cao, and T. Li, Effects of Ta Addition on the Microstructures and Mechanical Properties of CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 43–48.CrossRef
16.
go back to reference T.-D. Huang, L. Jiang, C. Zhang, H. Jiang, Y. Lu, and T. Li, Effect of Carbon Addition on the Microstructure and Mechanical Properties of CoCrFeNi High Entropy Alloy, Sci. China Technol. Sci., 2018, 61, p 117–123.CrossRef T.-D. Huang, L. Jiang, C. Zhang, H. Jiang, Y. Lu, and T. Li, Effect of Carbon Addition on the Microstructure and Mechanical Properties of CoCrFeNi High Entropy Alloy, Sci. China Technol. Sci., 2018, 61, p 117–123.CrossRef
17.
go back to reference H. Ma and C. Shek, Effects of Hf on the Microstructure and Mechanical Properties of CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2020, 827, p 154159.CrossRef H. Ma and C. Shek, Effects of Hf on the Microstructure and Mechanical Properties of CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2020, 827, p 154159.CrossRef
18.
go back to reference L. Xu, H. Du, J. Liu, D. Feng, and S. Xia, Microstructure Mechanical, and Electrochemical Properties of SiC Particle Reinforced CoCrFeNiCu High-Entropy Alloy Coatings, Coatings, 2022, 12(4), p 519.CrossRef L. Xu, H. Du, J. Liu, D. Feng, and S. Xia, Microstructure Mechanical, and Electrochemical Properties of SiC Particle Reinforced CoCrFeNiCu High-Entropy Alloy Coatings, Coatings, 2022, 12(4), p 519.CrossRef
19.
go back to reference S.W. Hussain, M. Mehmood, M.R.A. Karim, A. Godfrey, and K. Yaqoob, Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite, Sci. Rep., 12, (2022) S.W. Hussain, M. Mehmood, M.R.A. Karim, A. Godfrey, and K. Yaqoob, Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite, Sci. Rep., 12, (2022)
20.
go back to reference R. Zhou, G. Chen, B. Liu, J. Wang, L. Han, and Y. Liu, Microstructures and Wear Behaviour of (FeCoCrNi)1-x(WC)x High Entropy Alloy Composites, Int. J. Refract. Metals Hard Mater., 2018, 75, p 56–62.CrossRef R. Zhou, G. Chen, B. Liu, J. Wang, L. Han, and Y. Liu, Microstructures and Wear Behaviour of (FeCoCrNi)1-x(WC)x High Entropy Alloy Composites, Int. J. Refract. Metals Hard Mater., 2018, 75, p 56–62.CrossRef
21.
go back to reference T. Zhu, H. Wu, R. Zhou, N. Zhang, Y. Yin, L. Liang, Y. Liu, J. Li, Q. Shan, Q. Li, and W. Huang, Microstructures and Tribological Properties of TiC Reinforced FeCoNiCuAl High-Entropy Alloy at Normal and Elevated Temperature, Metals, 2020, 10(3), p 387.CrossRef T. Zhu, H. Wu, R. Zhou, N. Zhang, Y. Yin, L. Liang, Y. Liu, J. Li, Q. Shan, Q. Li, and W. Huang, Microstructures and Tribological Properties of TiC Reinforced FeCoNiCuAl High-Entropy Alloy at Normal and Elevated Temperature, Metals, 2020, 10(3), p 387.CrossRef
22.
go back to reference X. Guo, Q. Guo, J. Nie, Z. Liu, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Fan, and D. Zhang, Particle Size Effect on the Interfacial Properties of SiC Particle-Reinforced Al-Cu-Mg Composites, Mater. Sci. Eng. A, 2018, 711, p 643–649.CrossRef X. Guo, Q. Guo, J. Nie, Z. Liu, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Fan, and D. Zhang, Particle Size Effect on the Interfacial Properties of SiC Particle-Reinforced Al-Cu-Mg Composites, Mater. Sci. Eng. A, 2018, 711, p 643–649.CrossRef
23.
go back to reference A.B. Li, G.S. Wang, X.X. Zhang, Y.Q. Li, X. Gao, H. Sun, M.F. Qian, X.P. Cui, L. Geng, and G.H. Fan, Enhanced Combination of Strength and Ductility in Ultrafine-Grained Aluminum Composites Reinforced with High Content Intragranular Nanoparticles, Mater. Sci. Eng. A, 2019, 745, p 10–19.CrossRef A.B. Li, G.S. Wang, X.X. Zhang, Y.Q. Li, X. Gao, H. Sun, M.F. Qian, X.P. Cui, L. Geng, and G.H. Fan, Enhanced Combination of Strength and Ductility in Ultrafine-Grained Aluminum Composites Reinforced with High Content Intragranular Nanoparticles, Mater. Sci. Eng. A, 2019, 745, p 10–19.CrossRef
24.
go back to reference T. Lu, T. He, Z. Li, H. Chen, X. Han, Z. Fu, and W. Chen, Microstructure, Mechanical Properties and Machinability of Particulate Reinforced Al Matrix Composites: a Comparative Study Between SiC Particles and High-Entropy Alloy Particles, J. Mater. Res. Technol., 2020, 9(6), p 13646–13660.CrossRef T. Lu, T. He, Z. Li, H. Chen, X. Han, Z. Fu, and W. Chen, Microstructure, Mechanical Properties and Machinability of Particulate Reinforced Al Matrix Composites: a Comparative Study Between SiC Particles and High-Entropy Alloy Particles, J. Mater. Res. Technol., 2020, 9(6), p 13646–13660.CrossRef
25.
go back to reference O. Bembalge and S. Panigrahi, Aging Behavior of Ultrafine-Grained AA6063/SiC Composites with Varying Reinforcement Sizes, Mater. Sci. Eng. A, 2019, 768, p 138482.CrossRef O. Bembalge and S. Panigrahi, Aging Behavior of Ultrafine-Grained AA6063/SiC Composites with Varying Reinforcement Sizes, Mater. Sci. Eng. A, 2019, 768, p 138482.CrossRef
26.
go back to reference Q. Shen, X. Kong, X. Chen, X. Yao, V.B. Deev, and E.S. Prusov, Powder Plasma Arc Additive Manufactured CoCrFeNi(SiC)x High-Entropy Alloys: Microstructure and Mechanical Properties, Mater. Lett., 2021, 282, p 128736.CrossRef Q. Shen, X. Kong, X. Chen, X. Yao, V.B. Deev, and E.S. Prusov, Powder Plasma Arc Additive Manufactured CoCrFeNi(SiC)x High-Entropy Alloys: Microstructure and Mechanical Properties, Mater. Lett., 2021, 282, p 128736.CrossRef
27.
go back to reference H. Wu, S. Huang, H. Qiu, H. Zhu, and Z. Xie, Effect of Si and C Additions on the Reaction Mechanism and Mechanical Properties of FeCrNiCu High Entropy Alloy, Sci. Rep., 2019, 9(1), p 1–10. H. Wu, S. Huang, H. Qiu, H. Zhu, and Z. Xie, Effect of Si and C Additions on the Reaction Mechanism and Mechanical Properties of FeCrNiCu High Entropy Alloy, Sci. Rep., 2019, 9(1), p 1–10.
28.
go back to reference Ł Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, Effect of SiC Nano-Particles on Microstructure and Mechanical Properties of the CoCrFeMnNi High Entropy Alloy, J. Alloys Compd., 2017, 708, p 344–352.CrossRef Ł Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski, Effect of SiC Nano-Particles on Microstructure and Mechanical Properties of the CoCrFeMnNi High Entropy Alloy, J. Alloys Compd., 2017, 708, p 344–352.CrossRef
29.
go back to reference T. Zuo, R. Li, X. Ren, and Y. Zhang, Effects of Al and Si Addition on the Structure and Properties of CoFeNi Equal Atomic Ratio Alloy, J. Magn. Magn. Mater., 2014, 371, p 60–68.CrossRef T. Zuo, R. Li, X. Ren, and Y. Zhang, Effects of Al and Si Addition on the Structure and Properties of CoFeNi Equal Atomic Ratio Alloy, J. Magn. Magn. Mater., 2014, 371, p 60–68.CrossRef
30.
go back to reference Y. Chen, Y. Hu, C. Hsieh, J. Yeh, and S.-K. Chen, Competition Between Elements During Mechanical Alloying in an Octonary Multi-Principal-Element Alloy System, J. Alloys Compd., 2009, 481, p 768–775.CrossRef Y. Chen, Y. Hu, C. Hsieh, J. Yeh, and S.-K. Chen, Competition Between Elements During Mechanical Alloying in an Octonary Multi-Principal-Element Alloy System, J. Alloys Compd., 2009, 481, p 768–775.CrossRef
31.
go back to reference Y.-L. Li, Y. Zhao, L. Shen, H. Wu, and H.-G. Zhu, Microstructure and Mechanical Properties of in situ (TiC+ SiC)/FeCrCoNi High Entropy Alloy Matrix Composites, J. Iron Steel Res. Int., 2021, 28(4), p 496–504.CrossRef Y.-L. Li, Y. Zhao, L. Shen, H. Wu, and H.-G. Zhu, Microstructure and Mechanical Properties of in situ (TiC+ SiC)/FeCrCoNi High Entropy Alloy Matrix Composites, J. Iron Steel Res. Int., 2021, 28(4), p 496–504.CrossRef
32.
go back to reference I. Moravcik, A. Kubicek, L. Moravcikova-Gouvea, O. Adam, V. Kana, V. Pouchly, A. Zadera, and I. Dlouhy, The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering, Metals, 2020, 10(9), p 1186.CrossRef I. Moravcik, A. Kubicek, L. Moravcikova-Gouvea, O. Adam, V. Kana, V. Pouchly, A. Zadera, and I. Dlouhy, The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering, Metals, 2020, 10(9), p 1186.CrossRef
33.
go back to reference H. Chang, T. Zhang, S. Ma, D. Zhao, R. Xiong, T. Wang, Z. Li, and Z. Wang, Novel Si-added CrCoNi Medium Entropy Alloys Achieving the Breakthrough of Strength-Ductility Trade-Off, Mater. Des., 2021, 197, p 109202.CrossRef H. Chang, T. Zhang, S. Ma, D. Zhao, R. Xiong, T. Wang, Z. Li, and Z. Wang, Novel Si-added CrCoNi Medium Entropy Alloys Achieving the Breakthrough of Strength-Ductility Trade-Off, Mater. Des., 2021, 197, p 109202.CrossRef
34.
go back to reference S. Dasari, A. Sarkar, A. Sharma, B. Gwalani, D. Choudhuri, V. Soni, S. Manda, I. Samajdar, and R. Banerjee, Recovery of Cold-Worked Al0.3CoCrFeNi Complex Concentrated Alloy Through Twinning Assisted B2 Precipitation, Acta Mater., 2021, 202, p 448–462.CrossRef S. Dasari, A. Sarkar, A. Sharma, B. Gwalani, D. Choudhuri, V. Soni, S. Manda, I. Samajdar, and R. Banerjee, Recovery of Cold-Worked Al0.3CoCrFeNi Complex Concentrated Alloy Through Twinning Assisted B2 Precipitation, Acta Mater., 2021, 202, p 448–462.CrossRef
35.
go back to reference A. Sanaty-Zadeh, Comparison Between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites With Emphasis on Consideration of Hall-Petch Effect, Mater. Sci. Eng. A, 2012, 531, p 112–118.CrossRef A. Sanaty-Zadeh, Comparison Between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites With Emphasis on Consideration of Hall-Petch Effect, Mater. Sci. Eng. A, 2012, 531, p 112–118.CrossRef
36.
go back to reference G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, and E.P. George, Elastic Moduli and Thermal Expansion Coefficients of Medium-Entropy Subsystems of the CrMnFeCoNi High-Entropy Alloy, J. Alloys Compd., 2018, 746, p 244–255.CrossRef G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, and E.P. George, Elastic Moduli and Thermal Expansion Coefficients of Medium-Entropy Subsystems of the CrMnFeCoNi High-Entropy Alloy, J. Alloys Compd., 2018, 746, p 244–255.CrossRef
37.
go back to reference H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0≤x≤2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163(3), p 184–189.CrossRef H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0≤x≤2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163(3), p 184–189.CrossRef
38.
go back to reference J. Wang, B. Liu, C. Liu, and Y. Liu, Strengthening Mechanism in a High-Strength Carbon-Containing Powder Metallurgical High Entropy Alloy, Intermetallics, 2018, 102, p 58–64.CrossRef J. Wang, B. Liu, C. Liu, and Y. Liu, Strengthening Mechanism in a High-Strength Carbon-Containing Powder Metallurgical High Entropy Alloy, Intermetallics, 2018, 102, p 58–64.CrossRef
39.
go back to reference L. Zhang, P. Yu, J. Fan, M. Zhang, C. Zhang, H. Cui, and G. Li, Investigating The Micro And Nanomechanical Properties of CoCrFeNi-Cx High-Entropy Alloys Containing Eutectic Carbides, Mater. Sci. Eng. A, 2020, 796, p 140065.CrossRef L. Zhang, P. Yu, J. Fan, M. Zhang, C. Zhang, H. Cui, and G. Li, Investigating The Micro And Nanomechanical Properties of CoCrFeNi-Cx High-Entropy Alloys Containing Eutectic Carbides, Mater. Sci. Eng. A, 2020, 796, p 140065.CrossRef
Metadata
Title
Structural Features, Mechanical Properties, and Strengthening Behavior of SiC-Doped FeNiCoCr High-Entropy Alloys
Authors
Peijin Wang
Bo Wang
Taotao Ai
Zhifeng Deng
Zhongni Liao
Wenhu Li
Hongfeng Dong
Lizhai Zhang
Taotao Wang
Publication date
12-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07735-y

Premium Partners