Skip to main content
main-content
Top

About this book

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students.

Table of Contents

Frontmatter

Open Access

Chapter 1. Introduction

Abstract
The aerospace industry is aiming for a cleaner means of transport. One way to achieve this is by making transportation lighter, thus directly improving fuel efficiency and reducing environmental impact. A further aim, of the industry, is to reduce maintenance time to lessen operating costs, which can result in a reduction of air transport costs, benefitting both passenger and freight services. Current developments to support these aims include using advanced materials, with the current generation of aerospace structures being 50% composite materials. These materials offer a weight reduction whilst maintaining adequate stiffness; however, their damage mechanics are very complex and less deterministic than those of metals. This results in an overall reduced benefit. Structures are manufactured thicker using additional material to accommodate unknown or unpredictable failure modes, which cannot be easily detected during maintenance. A way to overcome these issues is the adoption of a structural health monitoring (SHM) inspection system.
Markus G. R. Sause, Elena Jasiūnienė, Rhys Pullin

Open Access

Chapter 2. Monitoring Tasks in Aerospace

Abstract
Approximately up to one-fifth of the direct operating cost of a commercial civilian fixed-wing aircraft is projected to be due to inspection and maintenance alone. Managing aircraft health with minimal human intervention and technologies that can perform continuous or on-demand monitoring/evaluation of aircraft components without having to take the aircraft out of service can have a significant impact on increasing availability while reducing maintenance cost. The ambition of these monitoring technologies is to shift aircraft maintenance practice from planned maintenance (PM), where the aircraft is taken out of service for scheduled inspection/maintenance, to condition-based maintenance (CBM), where aircraft is taken out of service only when maintenance is required, while maintaining the required levels of safety. Structural health monitoring (SHM) techniques can play a vital role in progressing towards CBM practice. Therefore, this chapter aims to provide the reader with a brief overview of the different SHM techniques and their use, as well as, challenges in implementing them for aircraft applications.
Shashank Pant, Zahra Sharif Khodaei, Mohamad Ghazi Droubi

Open Access

Chapter 3. Defect Types

Abstract
This chapter provides an overview of the common types of defects found in various structural materials and joints in aircraft. Materials manufacturing methods (including large-scale production) have been established in the aircraft industry. However, as will be seen in this chapter, manufacturing defects and defects during in-service conditions are very common across all material types. The structural material types include metals, composites, coatings, adhesively bonded and stir-welded joints. This chapter describes the defect types as a baseline for the description of their detection with the methods of Chap. 5 to 8. Based on the understanding of the defect types, there is great expectation for a technical breakthrough for the application of structural health monitoring (SHM) damage detection systems, where continuous monitoring and assessment with high throughput and yield will produce the desired structural integrity.
Nadimul Faisal, Ömer Necati Cora, Muhammed Latif Bekci, Romana Ewa Śliwa, Yehuda Sternberg, Shashank Pant, Richard Degenhardt, Anil Prathuru

Open Access

Chapter 4. Aerospace Requirements

Abstract
This chapter covers the overview of requirements arising in the aerospace industry for operating a structural health monitoring (SHM) system. The requirements are based on existing standards and guidelines and include both requirements on the physical components of the system (such as sensors, data acquisition systems and connectors) and their functional requirements (such as reliability, confidence measure and probability of detection). Emphasis has been given to on-board and ground-based components because they have different functionality requirements. An important factor in the reliability of the system is the effect of the environment and operational loads on the reliability of the diagnosis and, consequently, prognosis. The recommended guidelines for testing the reliability of the system under varying operational conditions are presented. This chapter is then finalized by reporting on methodologies for optimal sensor number and placement, based on different sensor technologies and different optimization algorithms.
Zahra Sharif Khodaei, Stephen Grigg

Open Access

Chapter 5. Ultrasonic Methods

Abstract
Ultrasonic inspection is a well recognized technique for non-destructive testing of aircraft components. It provides both local highly sensitive inspection in the vicinity of the sensor and long-range structural assessment by means of guided waves. In general, the properties of ultrasonic waves like velocity, attenuation and propagation characteristics such as reflection, transmission and scattering depend on composition and structural integrity of the material. Hence, ultrasonic inspection is commonly used as a primary tool for active inspection of aircraft components such as engine covers, wing skins and fuselages with the aim to detect, localise and describe delaminations, voids, fibre breakage and ply waviness. This chapter mainly focuses on long range guided wave structural health monitoring, as aircraft components require rapid evaluation of large components preferably in real time without the necessity for grouding of an aircraft. In few upcoming chapters advantages and shortcommings of bulk wave and guided wave ultrasonic inspection is presented, fundamentals of guided wave propagation and damage detection are reviewed, the reliability of guided wave SHM is discussed and some recent examples of guided wave applications to SHM of aerospace components are given.
Vykintas Samaitis, Elena Jasiūnienė, Pawel Packo, Damira Smagulova

Open Access

Chapter 6. Vibration Response-Based Damage Detection

Abstract
This chapter aimed to present different data driven Vibration-Based Methods (VBMs) for Structural Health Monitoring (SHM). This family of methods, widely used for engineering applications, present several advantages for damage identification applications. First, VBMs provide continuous information on the health state of the structure at a global level without the need to access the damaged elements and to know their location. Furthermore, damage can be identified using the dynamic response of the structure measured by sensors non-necessarily located in the proximity of damage and without any prior knowledge about the damage location. By principle, VBMs can identify damage related to changes in the dynamic properties of structures, such as stiffness variations due to modifications in the connections between structural elements, or changes in geometric and material properties. A classification of different VBMs was presented in this chapter. Furthermore, several case studies were presented to demonstrate the potential of these methods.
Maria Pina Limongelli, Emil Manoach, Said Quqa, Pier Francesco Giordano, Basuraj Bhowmik, Vikram Pakrashi, Alfredo Cigada

Open Access

Chapter 7. Acoustic Emission

Abstract
Acoustic emission (AE) is one of the most promising methods for structural health monitoring (SHM) of materials and structures. Because of its passive and non-invasive nature, it can be used during the operation of a structure and supply information that cannot be collected in real time through other techniques. It is based on the recording and study of the elastic waves that are excited by irreversible processes, such as crack nucleation and propagation. These signals are sensed by transducers and are transformed into electric waveforms that offer information on the location and the type of the source. This chapter intends to present the basic principles, the equipment, and the recent trends and applications in aeronautics, highlighting the role of AE in modern non-destructive testing and SHM. The literature in the field is vast; therefore, although the included references provide an idea of the basics and the contemporary interest and level of research and practice, they are just a fraction of the total possible list of worthy studies published in the recent years.
Dimitrios G. Aggelis, Markus G. R. Sause, Pawel Packo, Rhys Pullin, Steve Grigg, Tomaž Kek, Yu-Kun Lai

Open Access

Chapter 8. Strain Monitoring

Abstract
This chapter provides an overview of the use of strain sensors for structural health monitoring. Compared to acceleration-based sensors, strain sensors can measure the deformation of a structure at very low frequencies (up to DC) and enable the measurement of ultrasonic responses. Many existing SHM methods make use of strain measurement data. Furthermore, strain sensors can be easily integrated in (aircraft) structures. This chapter discusses the working principle of traditional strain gauges (Sect. 8.1) and different types of optical fiber sensors (Sect. 8.2). The installation requirements of strain sensors and the required hardware for reading out sensors are provided. We will also give an overview of the advantages and the limitations of commonly used strain sensors. Finally, we will present an overview of the applications of strain sensors for structural health monitoring in the aeronautics field.
Steve Vanlanduit, Mario Sorgente, Aydin R. Zadeh, Alfredo Güemes, Nadimul Faisal

Open Access

Chapter 9. Data Reduction Strategies

Abstract
Based on the variety of methods available for gathering data for the aircraft health status, the challenge is to reduce the overall amount of data in a trackable and safe manner to ensure that the remaining data are characteristic of the current aircraft status. This chapter will cover available data reduction strategies for this task and discuss the data intensity of the SHM methods of Chaps. 5 to 8 and established approaches to deal with the acquired data. This includes aspects of algorithms and legal issues arising in this context.
Basuraj Bhowmik, Said Quqa, Markus G. R. Sause, Vikram Pakrashi, Mohamad Ghazi Droubi

Open Access

Chapter 10. Conclusions

Abstract
The state of the art of structural health monitoring damage detection systems reviewed in this book shows that it is a promising area of technologies. SHM damage detection systems in civil aviation are still mostly limited to lab applications because there are still issues, which need to be solved for such systems to be integrated in an aircraft structure. Therefore, further research is needed to solve the current drawbacks/limitations of the existing SHM approaches such that this technology can be used in aircrafts.
Despite the current limitations, SHM application for damage detection in aircrafts would make the flying safer and the structure lifetime longer and reduce the maintenance time and costs considering that the maintenance could be performed not at the predetermined intervals, but upon the need based on the condition that would be determined by the SHM systems used. We conclude some of the important differences and the common challenges to the methods reviewed in this book and provide an outlook on the next steps to a successful implementation.
Elena Jasiūnienė, Markus G. R. Sause, Vykintas Samaitis, Dimitrios G. Aggelis, Maria Pina Limongelli, Steve Vanlanduit
Additional information

Premium Partners

    Image Credits