Skip to main content
Top
Published in: Journal of Materials Science 2/2015

01-01-2015 | Original Paper

Structural, magnetic, and magnetocaloric studies of La0.67Ba0.22Sr0.11Mn1−x Co x O3 manganites

Authors: F. Ben Jemaa, S. Mahmood, M. Ellouze, E. K. Hlil, F. Halouani

Published in: Journal of Materials Science | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we report the effect of Co doping on the structural and magnetic properties of La0.67Ba0.22Sr0.11Mn1−x Co x O3 (x = 0.0, 0.1, 0.2, 0.3 and 1) nanopowder samples synthesized by sol–gel method. All the samples crystallized in the orthorhombic system with Pnma space group, and the unit cell volume decreased significantly for x = 0.1, and then increased with increasing Co concentration up to x = 0.3. The stoichiometry and grain morphology of all samples were investigated by energy dispersive X-ray analysis and scanning electron microscopy. The magnetization measurements indicated that all samples exhibited a paramagnetic–ferromagnetic transition, and the transition temperature decreased with the increasing Co concentration. The magnetocaloric measurements on this series gave a significant magnetic entropy change (−ΔS M) near Curie temperature. The undoped sample gave a maximum magnetic entropy change of 2.75 J/kg K in a field change of 5 T, with a relative cooling power (RCP) of 290 J/kg. Intermediate level of substitution of Co for Mn (x = 0.2) was found to result in a decrease of the maximum magnetic entropy change, and to induce significant broadening of the peak, resulting in a relatively high RCP value of 270 J/kg. The observed maximum entropy change was found to be slightly lower than that calculated using the Landau model, and more significant deviations from the calculated values were observed at low temperatures. Our results on the magnetocaloric properties suggest that the parent compound La0.67Ba0.22Sr0.11MnO3 is attractive as a possible material for magnetic refrigeration around ambient temperature, whereas Co-doped samples are more efficient at lower temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kolat VS, Izgi T, Kaya AO, Bayri N, Gencer H, Atalay S (2010) Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32−x Sr x MnO3 (x = 0, 0.1, 0.18, 0.26 and 0.32) compounds. J Magn Magn Mater 322:427–433CrossRef Kolat VS, Izgi T, Kaya AO, Bayri N, Gencer H, Atalay S (2010) Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32−x Sr x MnO3 (x = 0, 0.1, 0.18, 0.26 and 0.32) compounds. J Magn Magn Mater 322:427–433CrossRef
2.
go back to reference Doshi RR, Solanki PS, Khachar U, Kuberkar DG, Krishna PSR, Banerjee P, Chaddah P (2011) First order paramagnetic–ferromagnetic phase transition in Tb3+ doped La0.5Ca0.5MnO3 manganite. Phys B 406:4031–4034CrossRef Doshi RR, Solanki PS, Khachar U, Kuberkar DG, Krishna PSR, Banerjee P, Chaddah P (2011) First order paramagnetic–ferromagnetic phase transition in Tb3+ doped La0.5Ca0.5MnO3 manganite. Phys B 406:4031–4034CrossRef
3.
go back to reference Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y, Tokura Y (1995) A first-order phase transition induced by a magnetic field. Science 270:961–963CrossRef Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y, Tokura Y (1995) A first-order phase transition induced by a magnetic field. Science 270:961–963CrossRef
4.
go back to reference Dhiman I, Das A, Mishra PK, Lalla NP, Kumar A (2011) The structural and magnetic ordering in La0.5−x Nd x Ca0.5MnO3 (0.1 ≤ x ≤ 0.5) manganites. J Magn Magn Mater 323:748–757CrossRef Dhiman I, Das A, Mishra PK, Lalla NP, Kumar A (2011) The structural and magnetic ordering in La0.5−x Nd x Ca0.5MnO3 (0.1 ≤ x ≤ 0.5) manganites. J Magn Magn Mater 323:748–757CrossRef
5.
go back to reference Ben Jemma F, Mahmood SH, Ellouze M, Hlil EK, Halouani F (2014) Critical behavior in Fe-doped manganites La0.67Ba0.22 Sr0.11Mn1−x Fe x O3 (0 ≤ x ≤ 0.2). J Mater Sci 49:6883–6891. doi:10.1007/s10853-014-8390-1 CrossRef Ben Jemma F, Mahmood SH, Ellouze M, Hlil EK, Halouani F (2014) Critical behavior in Fe-doped manganites La0.67Ba0.22 Sr0.11Mn1−x Fe x O3 (0 ≤ x ≤ 0.2). J Mater Sci 49:6883–6891. doi:10.​1007/​s10853-014-8390-1 CrossRef
6.
go back to reference Roder H, Zang J, Bishop AR (1996) Lattice effects in the colossal-magnetoresistance manganites. Phys Rev Lett 76:1356–1359CrossRef Roder H, Zang J, Bishop AR (1996) Lattice effects in the colossal-magnetoresistance manganites. Phys Rev Lett 76:1356–1359CrossRef
7.
go back to reference Cui X, Hu X, Xia H, Hu J, Wang D, Zhang S (2005) The first-order phase transition and colossal magnetoresistance effects in bulk Gd-doped La0.67Sr0.33MnO3. J Mater Sci 40:5053–5055. doi:10.1007/s10853-005-1602-y CrossRef Cui X, Hu X, Xia H, Hu J, Wang D, Zhang S (2005) The first-order phase transition and colossal magnetoresistance effects in bulk Gd-doped La0.67Sr0.33MnO3. J Mater Sci 40:5053–5055. doi:10.​1007/​s10853-005-1602-y CrossRef
8.
go back to reference Damay F, Maignan A, Martin C, Raveau B (1997) Cation size-temperature phase diagram of the manganites Ln0.5Sr0.5MnO3. J Appl Phys 81:1372–1374CrossRef Damay F, Maignan A, Martin C, Raveau B (1997) Cation size-temperature phase diagram of the manganites Ln0.5Sr0.5MnO3. J Appl Phys 81:1372–1374CrossRef
9.
go back to reference Damay F, Martin C, Maignan A, Raveau B (1997) Cation disorder and size effects upon magnetic transitions in Ln0.5A0.5MnO3 manganites. J Appl Phys 82:6181–6185CrossRef Damay F, Martin C, Maignan A, Raveau B (1997) Cation disorder and size effects upon magnetic transitions in Ln0.5A0.5MnO3 manganites. J Appl Phys 82:6181–6185CrossRef
10.
go back to reference Abdel-Khalek EK, Salem AF, Mohamed EA, Bahgat AA (2010) Magnetic properties of RE0.7Ca0.3Mn0.95Fe0.05O3 (RE = Sm and Gd) manganites at low temperature. J Magn Magn Mater 322:909–914CrossRef Abdel-Khalek EK, Salem AF, Mohamed EA, Bahgat AA (2010) Magnetic properties of RE0.7Ca0.3Mn0.95Fe0.05O3 (RE = Sm and Gd) manganites at low temperature. J Magn Magn Mater 322:909–914CrossRef
11.
go back to reference Millis AJ (1998) Lattice effects in magnetoresistive manganese perovskites. Nature 392:147–150CrossRef Millis AJ (1998) Lattice effects in magnetoresistive manganese perovskites. Nature 392:147–150CrossRef
12.
go back to reference Jha VK, Nautiyal P, Seikh MM, Chatterjee R, Mahendiran R, Kundu AK (2013) Heat capacity, thermopower and magnetoresistance effects in multiferroic La0.5Bi0.5 Mn0.5Fe0.5O3. J Mater Sci 48:7629–7634. doi:10.1007/s10853-013-7580-6 CrossRef Jha VK, Nautiyal P, Seikh MM, Chatterjee R, Mahendiran R, Kundu AK (2013) Heat capacity, thermopower and magnetoresistance effects in multiferroic La0.5Bi0.5 Mn0.5Fe0.5O3. J Mater Sci 48:7629–7634. doi:10.​1007/​s10853-013-7580-6 CrossRef
13.
go back to reference Fontcuberta J, Martinez B, Seffar A, Pinol S, Garcia-Munoz JL, Obradors X (1996) Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys Rev Lett 76:1122–1125CrossRef Fontcuberta J, Martinez B, Seffar A, Pinol S, Garcia-Munoz JL, Obradors X (1996) Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys Rev Lett 76:1122–1125CrossRef
15.
go back to reference Raccah PM, Goodenough JB (1967) First-order localized-electron ⇆ collective-electron transition in LaCoO3. Phys Rev 155:932–943CrossRef Raccah PM, Goodenough JB (1967) First-order localized-electron ⇆ collective-electron transition in LaCoO3. Phys Rev 155:932–943CrossRef
16.
go back to reference Senarys-Rodriguez MA, Goodenough JB (1995) LaCoO3 revisited. J Solid State Chem 116:224–231CrossRef Senarys-Rodriguez MA, Goodenough JB (1995) LaCoO3 revisited. J Solid State Chem 116:224–231CrossRef
17.
go back to reference Barnabe A, Maignan A, Hervieu M, Raveau B (1998) Mn-site doping induced CMR properties in calcium rich manganites Pr1−x Ca x MnO3 (0.6 ≤ x ≤ 0.7). Eur Phys J B1:145–150CrossRef Barnabe A, Maignan A, Hervieu M, Raveau B (1998) Mn-site doping induced CMR properties in calcium rich manganites Pr1−x Ca x MnO3 (0.6 ≤ x ≤ 0.7). Eur Phys J B1:145–150CrossRef
18.
go back to reference Troyanchuk IO, Lobanovsky LS, Khalyavin DD, Pastushonok SN, Szymczak H (2000) Magnetic and magnetotransport properties of Co-doped manganites with perovskite structure. J Magn Magn Mater 210:63–72CrossRef Troyanchuk IO, Lobanovsky LS, Khalyavin DD, Pastushonok SN, Szymczak H (2000) Magnetic and magnetotransport properties of Co-doped manganites with perovskite structure. J Magn Magn Mater 210:63–72CrossRef
19.
go back to reference Ikebe M, Fujishiro H, Kanoh S, Fukase T (2006) Anomalies in sound velocity and thermal expansion related to charge order and ferromagnetic transitions in Pr0.65Ca0.35(Mn1−z Co z )O3. Phys B 378:534–536CrossRef Ikebe M, Fujishiro H, Kanoh S, Fukase T (2006) Anomalies in sound velocity and thermal expansion related to charge order and ferromagnetic transitions in Pr0.65Ca0.35(Mn1−z Co z )O3. Phys B 378:534–536CrossRef
20.
go back to reference Martin C, Maignan A, Hervieu M, Raveau B (1999) Magnetic phase diagrams of L1−x A x MnO3 (L = Pr, Sm; A = Ca, Sr). Phys Rev B60:12191–12199CrossRef Martin C, Maignan A, Hervieu M, Raveau B (1999) Magnetic phase diagrams of L1−x A x MnO3 (L = Pr, Sm; A = Ca, Sr). Phys Rev B60:12191–12199CrossRef
21.
go back to reference Radaelli PG, Iannone G (1997) Structural effects on the magnetic and transport properties of perovskite A1−x A′ x MnO3 (x = 0.25, 0.3). Phys Rev B56:8265–8276CrossRef Radaelli PG, Iannone G (1997) Structural effects on the magnetic and transport properties of perovskite A1−x A′ x MnO3 (x = 0.25, 0.3). Phys Rev B56:8265–8276CrossRef
22.
go back to reference Zhong W, Au CT, Du YW (2013) Review of magnetocaloric effect in perovskite-type oxides. Chin Phys B 22:11–057501 Zhong W, Au CT, Du YW (2013) Review of magnetocaloric effect in perovskite-type oxides. Chin Phys B 22:11–057501
23.
go back to reference Brinker CJ, Scherer GW (1990) Sol–Gel science: the physics and chemistry of sol-gel processing. Academic Press, New York Brinker CJ, Scherer GW (1990) Sol–Gel science: the physics and chemistry of sol-gel processing. Academic Press, New York
24.
go back to reference Rietveld HM (1965) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1965) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
25.
go back to reference Roisnel T, Rodriguez-Carvajal J (2003) Computer program FULLPROF. LLB-LCSIM, May Roisnel T, Rodriguez-Carvajal J (2003) Computer program FULLPROF. LLB-LCSIM, May
26.
go back to reference Ellouze M, Boujelben W, Cheikhrouhou A, Fuess H, Madar R (2002) Vacancy effects on the crystallographic and magnetic properties in lacunar Pr0.7Ba0.3−x MnO3 oxides. Solid State Commun 124:125–130CrossRef Ellouze M, Boujelben W, Cheikhrouhou A, Fuess H, Madar R (2002) Vacancy effects on the crystallographic and magnetic properties in lacunar Pr0.7Ba0.3−x MnO3 oxides. Solid State Commun 124:125–130CrossRef
27.
go back to reference Schiffer P, Ramirez AP, Franklin KN, Cheon S-W (1996) Interaction-induced spin coplanarity in a Kagomé magnet: SrCr9pGa12−9pO19. Phys Rev Lett 77:2085–2088CrossRef Schiffer P, Ramirez AP, Franklin KN, Cheon S-W (1996) Interaction-induced spin coplanarity in a Kagomé magnet: SrCr9pGa12−9pO19. Phys Rev Lett 77:2085–2088CrossRef
28.
go back to reference Warren BE (1990) X-ray diffraction. Dover Pub. Inc., New York Warren BE (1990) X-ray diffraction. Dover Pub. Inc., New York
29.
go back to reference Gutiérrez J, Peña A, Barandiarán JM, Pizarro JL, Hernández L, Lezama L, Insausti M, Rojo T (2000) Structural and magnetic properties of La0.7Pb0.3 (Mn1−x Fe x )O3 (0 < ~x < ~0.3) giant magnetoresistance perovskites. Phys Rev B 61:9028–9035CrossRef Gutiérrez J, Peña A, Barandiarán JM, Pizarro JL, Hernández L, Lezama L, Insausti M, Rojo T (2000) Structural and magnetic properties of La0.7Pb0.3 (Mn1−x Fe x )O3 (0 < ~x < ~0.3) giant magnetoresistance perovskites. Phys Rev B 61:9028–9035CrossRef
30.
go back to reference Yu Q, Zhang J, Jia R, Jing C, Cao S (2008) Double M–I transitions and low-temperature resistivity minimum of La2/3Ca1/3Mn1−x Co x O3 (0 ≤ x ≤ 0.15) manganite. J Magn Magn Mater 320:3313–3317CrossRef Yu Q, Zhang J, Jia R, Jing C, Cao S (2008) Double M–I transitions and low-temperature resistivity minimum of La2/3Ca1/3Mn1−x Co x O3 (0 ≤ x ≤ 0.15) manganite. J Magn Magn Mater 320:3313–3317CrossRef
31.
go back to reference Bitla Y, Kaul SN, Barquín LF, Gutiérrez J, Barandiarán JM, Peña A (2010) Observation of isotropic-dipolar to isotropic-Heisenberg crossover in Co-and Ni-substituted manganites. New J Phys 12:23–093039CrossRef Bitla Y, Kaul SN, Barquín LF, Gutiérrez J, Barandiarán JM, Peña A (2010) Observation of isotropic-dipolar to isotropic-Heisenberg crossover in Co-and Ni-substituted manganites. New J Phys 12:23–093039CrossRef
32.
go back to reference Tai MF, Lee FY, Shi JB (2000) Co doping effect on the crystal structure, magnetoresistance and magnetic properties of an (La0.7Ba0.3)(Mn1−x Co x )O3 system with x = 0–1.0. J Magn Magn Mater 209:148–150CrossRef Tai MF, Lee FY, Shi JB (2000) Co doping effect on the crystal structure, magnetoresistance and magnetic properties of an (La0.7Ba0.3)(Mn1−x Co x )O3 system with x = 0–1.0. J Magn Magn Mater 209:148–150CrossRef
33.
go back to reference Baazaoui M, Zemni S, Boudard M, Rahmouni H, Gasmi A, Selmi A, Oumezzine M (2009) Magnetic and electrical behaviour of La0.67Ba0.33Mn1−x Fe x O3 perovskites. Mater Lett 63:2167–2170CrossRef Baazaoui M, Zemni S, Boudard M, Rahmouni H, Gasmi A, Selmi A, Oumezzine M (2009) Magnetic and electrical behaviour of La0.67Ba0.33Mn1−x Fe x O3 perovskites. Mater Lett 63:2167–2170CrossRef
34.
go back to reference Kallel N, Ben Abdelkhalek S, Kallel S, Peña O, Oumezzine M (2010) Structural and magnetic properties of (La0.70−x Y x )Ba0.30Mn1−x Fe x O3 perovskites simultaneously doped on A and B sites (0.0 ≤ x ≤ 0.30). J Alloys Compd 501(1):30–36CrossRef Kallel N, Ben Abdelkhalek S, Kallel S, Peña O, Oumezzine M (2010) Structural and magnetic properties of (La0.70−x Y x )Ba0.30Mn1−x Fe x O3 perovskites simultaneously doped on A and B sites (0.0 ≤ x ≤ 0.30). J Alloys Compd 501(1):30–36CrossRef
35.
go back to reference Banerjee BK (1964) On a generalized approach to first and second order magnetic transitions. Phys Lett 12:16–17CrossRef Banerjee BK (1964) On a generalized approach to first and second order magnetic transitions. Phys Lett 12:16–17CrossRef
36.
go back to reference Singh NK, Suresh KG, Nigam AK (2003) Itinerant electron metamagnetism and magnetocaloric effect in Dy(Co, Si)2. Solid State Commun 127:373–377CrossRef Singh NK, Suresh KG, Nigam AK (2003) Itinerant electron metamagnetism and magnetocaloric effect in Dy(Co, Si)2. Solid State Commun 127:373–377CrossRef
37.
go back to reference Bohigas X, Tejada J, Torres F, Ignacio Arnaudas J, Joven E, del Moral A (2002) Magnetocaloric effect in random magnetic anisotropy materials. Appl Phys Lett 81:2427–2429CrossRef Bohigas X, Tejada J, Torres F, Ignacio Arnaudas J, Joven E, del Moral A (2002) Magnetocaloric effect in random magnetic anisotropy materials. Appl Phys Lett 81:2427–2429CrossRef
38.
go back to reference Franco V, Conde A, Kuzmin MD, Romero-Enrique JM (2009) The magnetocaloric effect in materials with a second order phase transition: are T C and T peak necessarily coincident? J Appl Phys 105:07A917–07A920CrossRef Franco V, Conde A, Kuzmin MD, Romero-Enrique JM (2009) The magnetocaloric effect in materials with a second order phase transition: are T C and T peak necessarily coincident? J Appl Phys 105:07A917–07A920CrossRef
39.
go back to reference Tapas S, Das I, Banerjee S (2007) Magnetocaloric effect in Ho5Pd2: evidence of large cooling power. Appl Phys Lett 91:3–082511 Tapas S, Das I, Banerjee S (2007) Magnetocaloric effect in Ho5Pd2: evidence of large cooling power. Appl Phys Lett 91:3–082511
40.
go back to reference Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308:325–340CrossRef Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308:325–340CrossRef
41.
go back to reference Amaral JS, Reis MS, Amaral VS, Mendonça TM, Araújo JP, Sá MA, Tavares PB, Vieira JM (2005) Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La–Sr manganites. J Magn Magn Mater 290–291:686–689CrossRef Amaral JS, Reis MS, Amaral VS, Mendonça TM, Araújo JP, Sá MA, Tavares PB, Vieira JM (2005) Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La–Sr manganites. J Magn Magn Mater 290–291:686–689CrossRef
42.
go back to reference Amaral VS, Amaral JS (2004) Magnetoelastic coupling influence on the magneto caloric effect in ferromagnetic materials. J Magn Magn Mater 272–276:2104–2105CrossRef Amaral VS, Amaral JS (2004) Magnetoelastic coupling influence on the magneto caloric effect in ferromagnetic materials. J Magn Magn Mater 272–276:2104–2105CrossRef
43.
go back to reference Lee JS (2004) Evaluation of the magnetocaloric effect from magnetization and heat capacity data. Phys Status Solidi B 241:1765–1768CrossRef Lee JS (2004) Evaluation of the magnetocaloric effect from magnetization and heat capacity data. Phys Status Solidi B 241:1765–1768CrossRef
44.
go back to reference Bau LV, Khiem NV, Phuc NX, Hong LV, Nam DNH (2009) Magnetoresistance and magnetocaloric properties of La0.7Sr0.3Co0.95Mn0.05O3 compound. J Phys Conf Ser 187:5–012073CrossRef Bau LV, Khiem NV, Phuc NX, Hong LV, Nam DNH (2009) Magnetoresistance and magnetocaloric properties of La0.7Sr0.3Co0.95Mn0.05O3 compound. J Phys Conf Ser 187:5–012073CrossRef
45.
go back to reference Dinesen AR, Linderoth S, Mørup S (2005) Direct and indirect measurement of the magnetocaloric effect in La0.67Ca0.33−x Sr x MnO3±δ (x ϵ [0:0.33]). J Phys Condens Matter 17:6257–6269CrossRef Dinesen AR, Linderoth S, Mørup S (2005) Direct and indirect measurement of the magnetocaloric effect in La0.67Ca0.33−x Sr x MnOδ (x ϵ [0:0.33]). J Phys Condens Matter 17:6257–6269CrossRef
46.
go back to reference Nisha P, Savitha PS, Varma MR, Suresh KG (2012) Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−x Cr x O3 (x = 0.1, 0.25). Solid State Sci 14:40–47CrossRef Nisha P, Savitha PS, Varma MR, Suresh KG (2012) Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−x Cr x O3 (x = 0.1, 0.25). Solid State Sci 14:40–47CrossRef
47.
go back to reference Zhong W, Cheng W, Au CT, Du YW (2003) Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3MnO3−δ . J Magn Magn Mater 261:238–243CrossRef Zhong W, Cheng W, Au CT, Du YW (2003) Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3MnO3−δ . J Magn Magn Mater 261:238–243CrossRef
48.
go back to reference Phan MH, Chandra S, Bingham NS, Srikanth H, Zhang CL, Cheong SW, Hoang TD, Chinh HD (2010) Collapse of charge ordering and enhancement of magnetocaloric effect in nanocrystalline La0.35Pr0.275Ca0.375MnO3. Appl Phys Lett 97:3–242506CrossRef Phan MH, Chandra S, Bingham NS, Srikanth H, Zhang CL, Cheong SW, Hoang TD, Chinh HD (2010) Collapse of charge ordering and enhancement of magnetocaloric effect in nanocrystalline La0.35Pr0.275Ca0.375MnO3. Appl Phys Lett 97:3–242506CrossRef
49.
go back to reference Bohigas X, Tejada J, Barco ED, Zhang XX, Sales M (1998) Tunable magnetocaloric effect in ceramic perovskites. Appl Phys Lett 73:390–392CrossRef Bohigas X, Tejada J, Barco ED, Zhang XX, Sales M (1998) Tunable magnetocaloric effect in ceramic perovskites. Appl Phys Lett 73:390–392CrossRef
50.
go back to reference Chau N, Niem PQ, Nhat HN, Luong NH, Tho ND (2003) Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites. Phys B 327:214–217CrossRef Chau N, Niem PQ, Nhat HN, Luong NH, Tho ND (2003) Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites. Phys B 327:214–217CrossRef
Metadata
Title
Structural, magnetic, and magnetocaloric studies of La0.67Ba0.22Sr0.11Mn1−x Co x O3 manganites
Authors
F. Ben Jemaa
S. Mahmood
M. Ellouze
E. K. Hlil
F. Halouani
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 2/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8621-5

Other articles of this Issue 2/2015

Journal of Materials Science 2/2015 Go to the issue

Premium Partners