Skip to main content
Top

02-02-2025 | Research

Structural zoom for linear composite materials based on adaptive mesh and homogenization

Authors: Ali Ketata, Julien Yvonnet, Nicolas Feld, Fabrice Detrez, Augustin Parret-Freaud

Published in: Meccanica

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, an efficient method to investigate linear elastic fields around defects in heterogeneous structures is proposed. The technique combines the ideas of structural zoom methods, where a fine mesh is used in the vicinity of a defect, and where a coarse mesh is employed in regions far from the defect, in which a simplified model can be applied. When heterogeneous materials are involved, the coupling between the fine and coarse domains can be delicate. In this study, a fine mesh is used in a domain surrounding a defect (hole, crack, etc.) and describing explicitly the embedded heterogeneities. An adaptive mesh is used in the rest of the domain, liking the fine mesh of the zoomed region and the boundary if the structure. To take into account heterogeneities which can possibly cut the boundary of the fine mesh, non-constant homogenized properties are defined in the elements of the adaptive mesh taking into account the local underlying microstructure. As a result, solution in the fine mesh can handle effects of non-separated scales (strain gradients, boundary effects), even if large contrasts are involved. In addition to its use for studying localized defects, the potential of the technique to analyze fields in the whole structure through parallel computing is also investigated. In this case, a multi-domain version of the technique is provided, where the localization process is repeated for a decomposition of the heterogeneous structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aage N et al (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86MATHCrossRef Aage N et al (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86MATHCrossRef
3.
go back to reference Gosselet P, Rey C (2006) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572MathSciNetMATHCrossRef Gosselet P, Rey C (2006) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572MathSciNetMATHCrossRef
4.
go back to reference Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Numer Linear Algebra Appl 10(7):639–659MathSciNetMATHCrossRef Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Numer Linear Algebra Appl 10(7):639–659MathSciNetMATHCrossRef
5.
go back to reference Dohrmann CR, Widlund OB (2017) On the design of small coarse spaces for domain decomposition algorithms. SIAM J Sci Comput 39(4):1466–1488MathSciNetMATHCrossRef Dohrmann CR, Widlund OB (2017) On the design of small coarse spaces for domain decomposition algorithms. SIAM J Sci Comput 39(4):1466–1488MathSciNetMATHCrossRef
6.
go back to reference Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32(6):1205–1227MathSciNetMATHCrossRef Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32(6):1205–1227MathSciNetMATHCrossRef
7.
go back to reference Farhat C et al (1998) The two-level FETI method Part II: extension to shell problems, parallel implementation and performance result. Comput Methods Appl Mech Eng 155(1):153–179MATHCrossRef Farhat C et al (1998) The two-level FETI method Part II: extension to shell problems, parallel implementation and performance result. Comput Methods Appl Mech Eng 155(1):153–179MATHCrossRef
8.
go back to reference Farhat C, Mandel J (1998) The two-level FETI method for static and dynamic plate problems Part I: an optimal iterative solver for biharmonic systems. Comput Methods Appl Mech Eng 155(1):129–151MATHCrossRef Farhat C, Mandel J (1998) The two-level FETI method for static and dynamic plate problems Part I: an optimal iterative solver for biharmonic systems. Comput Methods Appl Mech Eng 155(1):129–151MATHCrossRef
9.
10.
go back to reference Spillane N et al (2013) Solving generalized eigenvalue problems on the interfaces to build a robust two level FETI method. Comptes Rendus. Math é matique 351(5):197–201MathSciNetMATHCrossRef Spillane N et al (2013) Solving generalized eigenvalue problems on the interfaces to build a robust two level FETI method. Comptes Rendus. Math é matique 351(5):197–201MathSciNetMATHCrossRef
11.
go back to reference Gosselet P et al (2015) Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions. Int J Numer Meth Eng 104(10):905–927MathSciNetMATHCrossRef Gosselet P et al (2015) Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions. Int J Numer Meth Eng 104(10):905–927MathSciNetMATHCrossRef
12.
go back to reference Ladevèze P, Dureisseix D (2000) A micro / macro approach for parallel computing of heterogeneous structures. Int J Comput Civ Struct Eng 1(1):18–28MATH Ladevèze P, Dureisseix D (2000) A micro / macro approach for parallel computing of heterogeneous structures. Int J Comput Civ Struct Eng 1(1):18–28MATH
13.
go back to reference Daghia F, Ladevèze P (2012) A micro-meso computational strategy for the prediction of the damage and failure of laminates. Compos Struct 94(12):3644–3653MATHCrossRef Daghia F, Ladevèze P (2012) A micro-meso computational strategy for the prediction of the damage and failure of laminates. Compos Struct 94(12):3644–3653MATHCrossRef
14.
go back to reference Guidault PA et al (2007) A two-scale approach with homogenization for the computation of cracked structures. Comput Struct Technol 85(17):1360–1371MathSciNetMATHCrossRef Guidault PA et al (2007) A two-scale approach with homogenization for the computation of cracked structures. Comput Struct Technol 85(17):1360–1371MathSciNetMATHCrossRef
15.
go back to reference Guidault PA et al (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5):381–399MATHCrossRef Guidault PA et al (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5):381–399MATHCrossRef
16.
go back to reference Ladevèze P, Dureisseix D (1999) A new micro-macro computational strategy for structural analysis. Comput Methods Appl Mech Eng 327(12):1237–1244MATH Ladevèze P, Dureisseix D (1999) A new micro-macro computational strategy for structural analysis. Comput Methods Appl Mech Eng 327(12):1237–1244MATH
17.
go back to reference Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Meth Eng 52(1):121–138MATHCrossRef Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Meth Eng 52(1):121–138MATHCrossRef
18.
go back to reference Ladevèze P, Nouy A (2002) A multiscale computational method with time and space homogenization. Comptes Rendus M é canique 330(10):683–689MATH Ladevèze P, Nouy A (2002) A multiscale computational method with time and space homogenization. Comptes Rendus M é canique 330(10):683–689MATH
19.
go back to reference Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNetMATHCrossRef Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNetMATHCrossRef
21.
go back to reference Van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644MathSciNetMATHCrossRef Van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644MathSciNetMATHCrossRef
22.
go back to reference El Ouafa S et al (2023) Fully-coupled parallel solver for the simulation of two-phase incompressible flows. Comput Fluids 265:105995MathSciNetMATHCrossRef El Ouafa S et al (2023) Fully-coupled parallel solver for the simulation of two-phase incompressible flows. Comput Fluids 265:105995MathSciNetMATHCrossRef
24.
go back to reference Rozložnık M (2018) Saddle-point problems and their iterative solution. Springer, New YorkMATHCrossRef Rozložnık M (2018) Saddle-point problems and their iterative solution. Springer, New YorkMATHCrossRef
25.
go back to reference Mohammed FD, Rivaie M (2017) Jacobi-Davidson, Gauss-Seidel and successive over-relaxation for solving systems of linear equations. Appl Math Comput Intell (AMCI) 6:41–52MATH Mohammed FD, Rivaie M (2017) Jacobi-Davidson, Gauss-Seidel and successive over-relaxation for solving systems of linear equations. Appl Math Comput Intell (AMCI) 6:41–52MATH
26.
go back to reference Chen D (2020) A symmetric successive overrelaxation (SSOR) based Gauss-Seidel massive MIMO detection algorithm. J Phys: Conf Ser 1438(1):012005MathSciNet Chen D (2020) A symmetric successive overrelaxation (SSOR) based Gauss-Seidel massive MIMO detection algorithm. J Phys: Conf Ser 1438(1):012005MathSciNet
27.
go back to reference Ruge JW, Stüben K (1987) Algebraic multigrid. Multigrid methods. SIAM, pp 73–130 Ruge JW, Stüben K (1987) Algebraic multigrid. Multigrid methods. SIAM, pp 73–130
28.
go back to reference Vanek P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3):179–196MathSciNetMATHCrossRef Vanek P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3):179–196MathSciNetMATHCrossRef
29.
go back to reference Notay Y (2010) An aggregation-based algebraic multigrid method. Electron Trans Numer Anal 37:123–146MathSciNetMATH Notay Y (2010) An aggregation-based algebraic multigrid method. Electron Trans Numer Anal 37:123–146MathSciNetMATH
30.
go back to reference Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. Journal of composite Materials. J Compos Mater 1(2):152–164MATHCrossRef Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. Journal of composite Materials. J Compos Mater 1(2):152–164MATHCrossRef
31.
go back to reference Suquet PM (1985) Elements of homogenization for inelastic solid mechanics, Homogenization techniques for composite media. Lect Notes Phys 272:193MATHCrossRef Suquet PM (1985) Elements of homogenization for inelastic solid mechanics, Homogenization techniques for composite media. Lect Notes Phys 272:193MATHCrossRef
32.
go back to reference Kruch S (2007) Homogenized and relocalized mechanical fields. J Strain Anal Eng Des 42(4):215–226MATHCrossRef Kruch S (2007) Homogenized and relocalized mechanical fields. J Strain Anal Eng Des 42(4):215–226MATHCrossRef
33.
go back to reference Kouzentsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Meth Eng 54(8):449–454MATH Kouzentsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Meth Eng 54(8):449–454MATH
34.
go back to reference Kouzentsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550MATHCrossRef Kouzentsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550MATHCrossRef
35.
go back to reference Pham K, Kouzentsova VG, Geers MGD (2013) Transient computational homogenization for heterogeneous materials under dynamic excitation. J Mech Phys Solids 61(11):2125–2146MathSciNetMATHCrossRef Pham K, Kouzentsova VG, Geers MGD (2013) Transient computational homogenization for heterogeneous materials under dynamic excitation. J Mech Phys Solids 61(11):2125–2146MathSciNetMATHCrossRef
36.
go back to reference Kouzentsova VG, Geers MGD, Brekelmans WAM (2004) Size of a representative volume element in a second-order computational homogenization framework. Int J Multiscale Comput Eng 2(4):575–598MATHCrossRef Kouzentsova VG, Geers MGD, Brekelmans WAM (2004) Size of a representative volume element in a second-order computational homogenization framework. Int J Multiscale Comput Eng 2(4):575–598MATHCrossRef
39.
go back to reference Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly nonlinear structures using generalized continua. Comput Methods Appl Mech Eng 192(28):3233–3244MATHCrossRef Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly nonlinear structures using generalized continua. Comput Methods Appl Mech Eng 192(28):3233–3244MATHCrossRef
40.
go back to reference Hirai I, Wang BP, Pilkey WD (1983) An efficient zooming method for finite element analysis. Int J Numer Meth Eng 20(9):1671–1683MATHCrossRef Hirai I, Wang BP, Pilkey WD (1983) An efficient zooming method for finite element analysis. Int J Numer Meth Eng 20(9):1671–1683MATHCrossRef
41.
42.
go back to reference Ransom JB, Knight NF (1990) Global/local stress analysis of composite panels. Comput Struct 37(4):375–395MATHCrossRef Ransom JB, Knight NF (1990) Global/local stress analysis of composite panels. Comput Struct 37(4):375–395MATHCrossRef
44.
go back to reference Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2(4):333–346MATHCrossRef Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2(4):333–346MATHCrossRef
45.
go back to reference Dhia HB (1998) Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l’Academie des Sci Ser IIB Mech Phys Astron 12(326):899–904MATH Dhia HB (1998) Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l’Academie des Sci Ser IIB Mech Phys Astron 12(326):899–904MATH
46.
go back to reference Dhia HB, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Meth Eng 62(11):1442–1462MATHCrossRef Dhia HB, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Meth Eng 62(11):1442–1462MATHCrossRef
47.
go back to reference Yvonnet J (2019) Computational homogenization of heterogeneous materials with finite elements. Springer Nature, New YorkMATHCrossRef Yvonnet J (2019) Computational homogenization of heterogeneous materials with finite elements. Springer Nature, New YorkMATHCrossRef
48.
go back to reference Mindlin R, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124MATHCrossRef Mindlin R, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124MATHCrossRef
49.
go back to reference Auffray N, Dirrenberger J, Rosi G (2015) A complete description of bidimensional anisotropic strain-gradient elasticity. Int J Solids Struct 69:195–206MATHCrossRef Auffray N, Dirrenberger J, Rosi G (2015) A complete description of bidimensional anisotropic strain-gradient elasticity. Int J Solids Struct 69:195–206MATHCrossRef
Metadata
Title
Structural zoom for linear composite materials based on adaptive mesh and homogenization
Authors
Ali Ketata
Julien Yvonnet
Nicolas Feld
Fabrice Detrez
Augustin Parret-Freaud
Publication date
02-02-2025
Publisher
Springer Netherlands
Published in
Meccanica
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-025-01938-y

Premium Partners