Skip to main content
Top

2016 | OriginalPaper | Chapter

Structure and Dynamics of Turbulence in Super-Hydrophobic Channel Flow

Authors : Amirreza Rastegari, Rayhaneh Akhavan

Published in: Progress in Wall Turbulence 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and dynamics of turbulence in turbulent channel flow with super-hydrophobic (SH) walls has been investigated using DNS with Lattice Boltzmann methods. The channel walls consisted of longitudinal arrays of SH microgrooves of width g, separated by distances of w. The liquid/gas interfaces in the SH walls were modeled as idealized, flat, shear-free surfaces. Simulations were performed at a bulk Reynolds number of \(Re_b = U_{bulk} h/\nu = 3600\), corresponding to \(Re_{\tau _0} = u_{\tau _0} h / \nu \approx 223\). Drag reductions (DR) of 5–47 % and 51–83 % were obtained with \(g/w=1\), and \(g/w = 7\) and \(g/w = 15\), respectively. DR was found to be primarily due to surface slip. Mathematical analysis shows that the magnitude of DR in both laminar and turbulent flow is given by \(DR = U_{slip}/U_{bulk} + O(\varepsilon )\). In laminar flow, where DR is purely due to surface slip, \(\varepsilon \) is zero. In turbulent flow, \(\varepsilon \) attains a small nonzero value at high DR, reflecting additional DR effects resulting from modification of the turbulence dynamics in the interior of the flow due to the presence of the SH surface. Analysis of the turbulence statistics and kinetic energy budgets in the drag-reduced flow reveals that the influence of the SH surface remains confined to a surface layer of thickness on the order of the SH microgrooves width, g. Outside of this layer, the ‘normalized’ turbulence dynamics proceeds as in regular turbulent channel flow. Within the surface layer, the presence of the pattern of longitudinal microgrooves on the SH surfaces gives rise to spanwise variations in all Reynolds-averaged turbulence quantities, leading to development of a mean secondary flow and additional turbulence production and Reynolds shear stresses within the surface layer of the SH channel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Cottin-Bizonne, B. Cross, A. Steinberger, E. Charlaix, Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102 (2005)CrossRef C. Cottin-Bizonne, B. Cross, A. Steinberger, E. Charlaix, Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102 (2005)CrossRef
2.
go back to reference R.J. Daniello, N.E. Waterhouse, J.P. Rothstein, Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21, 085103 (2009)CrossRef R.J. Daniello, N.E. Waterhouse, J.P. Rothstein, Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21, 085103 (2009)CrossRef
3.
go back to reference A.M.J. Davis, E. Lauga, Effective slip in pressure-driven stokes flow. J. Fluid Mech. 661, 402–411 (2010)CrossRefMATH A.M.J. Davis, E. Lauga, Effective slip in pressure-driven stokes flow. J. Fluid Mech. 661, 402–411 (2010)CrossRefMATH
4.
go back to reference K. Fukagata, N. Kasagi, P. Koumoutsakos, A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703 (2006)CrossRef K. Fukagata, N. Kasagi, P. Koumoutsakos, A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703 (2006)CrossRef
6.
go back to reference C. Lee, C. Choi, C. Kim, Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101, 064501 (2008)CrossRef C. Lee, C. Choi, C. Kim, Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101, 064501 (2008)CrossRef
7.
go back to reference M.B. Martel, J.P. Rothstein, J.B. Perot, An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22, 065102 (2010)CrossRef M.B. Martel, J.P. Rothstein, J.B. Perot, An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22, 065102 (2010)CrossRef
8.
go back to reference T. Min, J. Kim, Effect of superhydrophobic surfaces on skin-friction drag. Phys. Fluids 16, L55 (2004)CrossRef T. Min, J. Kim, Effect of superhydrophobic surfaces on skin-friction drag. Phys. Fluids 16, L55 (2004)CrossRef
9.
go back to reference J. Ou, J.P. Rothstein, Direct velocity measurements of the flow past drag reducing ultrahydrophobic surfaces. Phys. Fluids 17, 103606 (2005)CrossRef J. Ou, J.P. Rothstein, Direct velocity measurements of the flow past drag reducing ultrahydrophobic surfaces. Phys. Fluids 17, 103606 (2005)CrossRef
10.
go back to reference C. Peguero, K. Bruer, On drag reduction in turbulent channel flow over superhydrophobic surfaces, in Advances in Turbulence XII Proceedings of the 12th EUROMECH European Turbulence Conference, 7–10 September 2009, ed. by B. Eckhardt (Springer, Berlin, 2009), pp. 233–236 C. Peguero, K. Bruer, On drag reduction in turbulent channel flow over superhydrophobic surfaces, in Advances in Turbulence XII Proceedings of the 12th EUROMECH European Turbulence Conference, 7–10 September 2009, ed. by B. Eckhardt (Springer, Berlin, 2009), pp. 233–236
12.
go back to reference J.R. Philip, Integral properties of flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23, 960–968 (1972)MathSciNetCrossRefMATH J.R. Philip, Integral properties of flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23, 960–968 (1972)MathSciNetCrossRefMATH
13.
go back to reference A. Rastegari, R. Akhavan, On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4 (2015) A. Rastegari, R. Akhavan, On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4 (2015)
14.
go back to reference J.P. Rothstein, Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRef J.P. Rothstein, Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRef
15.
go back to reference S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001)MATH S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001)MATH
16.
go back to reference P. Tsai, A.M. Peters, C. Pirat, M. Wessling, R.G.H. Lammertink, D. Lohse, Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21, 112002 (2009)CrossRef P. Tsai, A.M. Peters, C. Pirat, M. Wessling, R.G.H. Lammertink, D. Lohse, Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21, 112002 (2009)CrossRef
17.
go back to reference R.S. Voronov, D.V. Papavassiliou, Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind. Eng. Chem. Res. 47, 2455–2477 (2008)CrossRef R.S. Voronov, D.V. Papavassiliou, Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind. Eng. Chem. Res. 47, 2455–2477 (2008)CrossRef
18.
go back to reference K. Watanabe, Y. Ugadawa, H. Ugadawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225–238 (1999)CrossRefMATH K. Watanabe, Y. Ugadawa, H. Ugadawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225–238 (1999)CrossRefMATH
19.
go back to reference B. Woolford, J. Prince, D. Maynes, B.W. Webb, Particle image velocimetry charactrization of turbulent channel flow with rib patterned superhydrophobic walls. Phys. Fluids 21, 085106 (2009)CrossRef B. Woolford, J. Prince, D. Maynes, B.W. Webb, Particle image velocimetry charactrization of turbulent channel flow with rib patterned superhydrophobic walls. Phys. Fluids 21, 085106 (2009)CrossRef
Metadata
Title
Structure and Dynamics of Turbulence in Super-Hydrophobic Channel Flow
Authors
Amirreza Rastegari
Rayhaneh Akhavan
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-20388-1_32

Premium Partners