Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 12/2021

01-12-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Mechanical Properties of Al–Cu–Mg–Si Alloy Prepared by Selective Laser Melting

Authors: I. G. Brodova, A. N. Klenov, I. G. Shirinkina, E. B. Smirnov, N. Yu. Orlova

Published in: Physics of Metals and Metallography | Issue 12/2021

Login to get access
share
SHARE

Abstract

The effect of the physical and additive-manufacturing (3D printing) characteristics on the structure and hardness of monolith and netlike articles fabricated from the Al–Cu–Mg–Si alloy by selective laser melting,—is considered. The structure and hardness of monolith samples, which were synthesized at the laser powers P = 100–200 W, scanning speeds V = 400–950 mm/s, and unchanged both laser beam spot diameters of 60 and 75 µm and powder layer thickness of 0.05 mm,—were compared and analysed. It has been found that the hardness of samples synthesized at Р = 200 W and V = 750–900 mm/s is 50HB10/250; the minimum hardness (less than 28HB10/250) is observed for the samples fabricated at V = 400 mm/s and Р = 100 W. Metallographic studies of the structure of samples exhibit the presence of defects, such as shrinkage voids, hot cracks, and non-melt powder particles. Experimental data indicating the correlation between the build geometry of netlike samples characterized by different filling levels (amount and configuration of the internal construction holes) and their dynamic properties measured by Hopkinson–Kolsky compression tests are obtained. It has been found that the decrease in the density (ρ = 2.44 – 1.19 g/cm3) and increase in the total fraction of hole area in the build plane and plane perpendicular to the build plane from 4 to 86% leads to the decrease in the dynamic mechanical properties, namely, the yield stress and ultimate tensile strength by 3 and by 4.7 times, respectively.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference E. N. Kablov, “Additive technology is the dominant national technology initiative,” Intellekt i Tekhnologii, No. 2 (11), 52–55 (2015). E. N. Kablov, “Additive technology is the dominant national technology initiative,” Intellekt i Tekhnologii, No. 2 (11), 52–55 (2015).
2.
go back to reference I. S. Popkova, V. S. Zolotorevskii, and A. N. Solonin, “Production of products from aluminum and its alloys by selective laser melting,” Tekhnologiya Legkikh Splavov, No. 4, 14–24 (2014). I. S. Popkova, V. S. Zolotorevskii, and A. N. Solonin, “Production of products from aluminum and its alloys by selective laser melting,” Tekhnologiya Legkikh Splavov, No. 4, 14–24 (2014).
3.
go back to reference E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components.,” J. Mater. Process. Technol. 211, 275–284 (2011). CrossRef E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components.,” J. Mater. Process. Technol. 211, 275–284 (2011). CrossRef
4.
go back to reference T. DebRoy, H. L. Wei, J. S. Zuback, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. Ded, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018). CrossRef T. DebRoy, H. L. Wei, J. S. Zuback, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. Ded, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018). CrossRef
5.
go back to reference D. K. Ryabov, V Antipov, V. A. Korolev, and P. N. Medvedev, “Influence of technological factors on the structure and properties of silumin obtained using selective laser synthesis technology,” Aviatsionnye Materialy i Tekhnologii, No. S1, 44–51 (2016). D. K. Ryabov, V Antipov, V. A. Korolev, and P. N. Medvedev, “Influence of technological factors on the structure and properties of silumin obtained using selective laser synthesis technology,” Aviatsionnye Materialy i Tekhnologii, No. S1, 44–51 (2016).
6.
go back to reference E. O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties,” J. Mater. Process. Technol. 213, 1387–1405 (2013). CrossRef E. O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties,” J. Mater. Process. Technol. 213, 1387–1405 (2013). CrossRef
7.
go back to reference N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi 10Mg alloy: Process optimization and mechanical properties development,” Mater. Des. 64, 417–424 (2015). CrossRef N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi 10Mg alloy: Process optimization and mechanical properties development,” Mater. Des. 64, 417–424 (2015). CrossRef
8.
go back to reference J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building direction on porosity and fatigue life of selective laser melted AlSi 12Mg alloy,” Mater. Sci. Eng., A  729, 76–85 (2018). CrossRef J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building direction on porosity and fatigue life of selective laser melted AlSi 12Mg alloy,” Mater. Sci. Eng., A  729, 76–85 (2018). CrossRef
9.
go back to reference I. G. Brodova, O. A. Chikova, A. N. Petrova, and A. G. Merkushev, “Structure formation and properties of eutectic silumin obtained using selective laser melting,” Phys Met. Metallogr. 120, No. 11, 1109–1114 (2019). CrossRef I. G. Brodova, O. A. Chikova, A. N. Petrova, and A. G. Merkushev, “Structure formation and properties of eutectic silumin obtained using selective laser melting,” Phys Met. Metallogr. 120, No. 11, 1109–1114 (2019). CrossRef
10.
go back to reference H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016). CrossRef H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016). CrossRef
11.
go back to reference A. B. Spierings, K. Dawson, M. Voegtlin, F. Palm, and P. J. Uggowitzer, “Microstructure and mechanical properties of as-processed scandium modified aluminium using selective laser melting,” Manuf. Technol. 65, 213–216 (2016). CrossRef A. B. Spierings, K. Dawson, M. Voegtlin, F. Palm, and P. J. Uggowitzer, “Microstructure and mechanical properties of as-processed scandium modified aluminium using selective laser melting,” Manuf. Technol. 65, 213–216 (2016). CrossRef
12.
go back to reference A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublind, F. Palme, and K. Wegener, “Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting,” Mater. Des. 115, 52–63 (2017). CrossRef A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublind, F. Palme, and K. Wegener, “Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting,” Mater. Des. 115, 52–63 (2017). CrossRef
13.
go back to reference G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: a review,” Appl. Bionics Biomech., No. 3, 1–14 (2018). G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: a review,” Appl. Bionics Biomech., No. 3, 1–14 (2018).
14.
go back to reference S. V. D’yachenko, L. A. Lebedev, M. M. Sychev, and L. A. Nefedova, “Physicomechanical properties of a model material in the form of a cube with the topology of threefold periodic minimal surfaces of the gyroid type,” Tech. Phys. 63, 984–987 (2018). CrossRef S. V. D’yachenko, L. A. Lebedev, M. M. Sychev, and L. A. Nefedova, “Physicomechanical properties of a model material in the form of a cube with the topology of threefold periodic minimal surfaces of the gyroid type,” Tech. Phys. 63, 984–987 (2018). CrossRef
15.
go back to reference A. N. Petrova, I. G. Brodova, and S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, No. 12, 1221–1227 (2019) CrossRef A. N. Petrova, I. G. Brodova, and S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, No. 12, 1221–1227 (2019) CrossRef
16.
go back to reference I. G. Shirinkina, I. G. Brodova, D. Yu. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, No. 12, 1193–1202 (2020). CrossRef I. G. Shirinkina, I. G. Brodova, D. Yu. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, No. 12, 1193–1202 (2020). CrossRef
17.
go back to reference I. G. Brodova, P. S. Popel’, N. M. Barbin, and N. A. Vatolin, Melts as a Basis for Formation of Structure and Properties of Aluminum Alloys (UrO RAN, Yekaterinburg, 2005) [in Russian]. I. G. Brodova, P. S. Popel’, N. M. Barbin, and N. A. Vatolin, Melts as a Basis for Formation of Structure and Properties of Aluminum Alloys (UrO RAN, Yekaterinburg, 2005) [in Russian].
18.
go back to reference N. T. Aboulkhai, I. Maskery, and C. Tuck, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng., A 667, 139–146 (2016). CrossRef N. T. Aboulkhai, I. Maskery, and C. Tuck, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng., A 667, 139–146 (2016). CrossRef
19.
go back to reference L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloy Compd. 615, 338–347 (2014). CrossRef L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloy Compd. 615, 338–347 (2014). CrossRef
20.
go back to reference C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manuf. 22, 165–175 (2018). CrossRef C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manuf. 22, 165–175 (2018). CrossRef
21.
go back to reference S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater. 108, 36–45 (2016). CrossRef S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater. 108, 36–45 (2016). CrossRef
22.
go back to reference N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of Built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metallogr. 119, No. 11, 1079–1086 (2018). CrossRef N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of Built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metallogr. 119, No. 11, 1079–1086 (2018). CrossRef
23.
go back to reference N. V. Kazantseva, I. V. Ezhov, D. I. Davydov, and A. G. Merkushev, “Magnetic properties and structure of products from 1.4540 stainless steel manufactured by 3D printing,” Phys. Met. Metallogr. 120, 1270–1275 (2019). CrossRef N. V. Kazantseva, I. V. Ezhov, D. I. Davydov, and A. G. Merkushev, “Magnetic properties and structure of products from 1.4540 stainless steel manufactured by 3D printing,” Phys. Met. Metallogr. 120, 1270–1275 (2019). CrossRef
24.
go back to reference I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague, “A mechanical property evaluation of graded density Al–Si 10–Mg lattice structures manufactured by selective laser melting,” Mater. Sci. Eng., A 670, 264–274 (2016). CrossRef I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague, “A mechanical property evaluation of graded density Al–Si 10–Mg lattice structures manufactured by selective laser melting,” Mater. Sci. Eng., A 670, 264–274 (2016). CrossRef
26.
go back to reference M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image Processing with Image,” J. Biophoton. Int. 11, No. 7, 36–42 (2004). M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image Processing with Image,” J. Biophoton. Int. 11, No. 7, 36–42 (2004).
27.
go back to reference A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Features of fracture of submicrocrystalline Al–Mg–Mn alloy under shock compression,” Pish’ma Zh. Tekh. Fiz. 43, No. 10, 34–41 (2017). A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Features of fracture of submicrocrystalline Al–Mg–Mn alloy under shock compression,” Pish’ma Zh. Tekh. Fiz. 43, No. 10, 34–41 (2017).
28.
go back to reference V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, D. N. Abdullina, E. A. Petukhov, E. B. Smirnov, E. V. Shorokhov, A. I. Klenov, and A. A. Pil’shchikov, “Structure and mechanical properties of austenitic stainless steel prepared by selective laser melting,” Phys. Met. Metallogr. 122, No. 5, 491–497 (2021). CrossRef V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, D. N. Abdullina, E. A. Petukhov, E. B. Smirnov, E. V. Shorokhov, A. I. Klenov, and A. A. Pil’shchikov, “Structure and mechanical properties of austenitic stainless steel prepared by selective laser melting,” Phys. Met. Metallogr. 122, No. 5, 491–497 (2021). CrossRef
Metadata
Title
Structure and Mechanical Properties of Al–Cu–Mg–Si Alloy Prepared by Selective Laser Melting
Authors
I. G. Brodova
A. N. Klenov
I. G. Shirinkina
E. B. Smirnov
N. Yu. Orlova
Publication date
01-12-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 12/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21120036