Skip to main content
Top
Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Properties of Al–4.5Mg–0.15Zr Compositions Alloyed with Er, Y, and Yb

Authors: A. G. Mochugovskiy, R. Yu. Barkov, A. V. Mikhaylovskaya, I. S. Loginova, O. A. Yakovtseva, A. V. Pozdniakov

Published in: Physics of Metals and Metallography | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and properties of the Al–4.5Mg–0.15Zr compositions additionally alloyed with Er, Y, and Yb are studied. During low-temperature annealing of the alloys, the precipitates of 3–5 nm in size with the L12 structure are formed. The recrystallization of cold-rolled sheets of the studied alloys starts at a temperature of ~300°С, when the hardness substantially decreases as compared to that of the rolled alloys, and the structure is almost completely recrystallized. During heating to 550°С, the stable recrystallized structure with a grain size of 11–13 µm remains in the alloys with Er and Yb, whereas, in the alloy with Y, the coarse-grained structure with an average grain size of 40 ± 7 µm is formed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).CrossRef N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).CrossRef
2.
go back to reference O. Izumi and D. Oelschlägel, “Structural investigation of precipitation in an aluminum alloy containing 1.1 weight percent zirconium,” Z. Met. 60, 845–851 (1969). O. Izumi and D. Oelschlägel, “Structural investigation of precipitation in an aluminum alloy containing 1.1 weight percent zirconium,” Z. Met. 60, 845–851 (1969).
3.
go back to reference E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).CrossRef E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).CrossRef
4.
go back to reference V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (2007), ISBN 9780080453705.CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (2007), ISBN 9780080453705.CrossRef
5.
go back to reference C. Fuller, J. Murray, and D. Seidman, “Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al(ScZr) precipitates,” Acta Mater. 53, 5401–5413 (2005).CrossRef C. Fuller, J. Murray, and D. Seidman, “Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al(ScZr) precipitates,” Acta Mater. 53, 5401–5413 (2005).CrossRef
6.
go back to reference A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).CrossRef A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).CrossRef
7.
go back to reference Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, and G. Wilde, “Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation,” Acta Mater. 124, 210–224 (2017).CrossRef Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, and G. Wilde, “Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation,” Acta Mater. 124, 210–224 (2017).CrossRef
8.
go back to reference Y. Sun, Y. Luo, Q. Pan, B. Liu, L. Long, W. Wang, J. Ye, Z. Huang, and S. Xiang, “Effect of Sc content on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy,” Mater. Today Commun. 26, 101899 (2021).CrossRef Y. Sun, Y. Luo, Q. Pan, B. Liu, L. Long, W. Wang, J. Ye, Z. Huang, and S. Xiang, “Effect of Sc content on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy,” Mater. Today Commun. 26, 101899 (2021).CrossRef
9.
go back to reference A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Y. Taba-chkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).CrossRef A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Y. Taba-chkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).CrossRef
10.
go back to reference G. M. Novotny and A. J. Ardell, “Precipitation of Al3Sc in binary Al–Sc alloys,” Mater. Sci. Eng., A 318, 144–154 (2001).CrossRef G. M. Novotny and A. J. Ardell, “Precipitation of Al3Sc in binary Al–Sc alloys,” Mater. Sci. Eng., A 318, 144–154 (2001).CrossRef
11.
go back to reference E. Clouet, “Excess solvent in precipitates,” Nat. Mater. 17, 1060–1061 (2018).CrossRef E. Clouet, “Excess solvent in precipitates,” Nat. Mater. 17, 1060–1061 (2018).CrossRef
12.
go back to reference A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater. 52, 621–625 (2005).CrossRef A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater. 52, 621–625 (2005).CrossRef
13.
go back to reference K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep-resistant aluminum-based alloys—A review,” Z. Metallkunde 97, 246–265 (2006).CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep-resistant aluminum-based alloys—A review,” Z. Metallkunde 97, 246–265 (2006).CrossRef
14.
go back to reference C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, 4803–4814 (2003).CrossRef C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, 4803–4814 (2003).CrossRef
15.
go back to reference B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys,” Scr. Mater. 51, 333–337 (2004).CrossRef B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys,” Scr. Mater. 51, 333–337 (2004).CrossRef
16.
go back to reference N. A. Belov, A. N. Alabin, D. G. Eskin, and V. V. Istomin-Kastrovskii, “Optimization of hardening of Al–Zr–Sc cast alloys,” J. Mater. Sci. 41, 5890–5899 (2006).CrossRef N. A. Belov, A. N. Alabin, D. G. Eskin, and V. V. Istomin-Kastrovskii, “Optimization of hardening of Al–Zr–Sc cast alloys,” J. Mater. Sci. 41, 5890–5899 (2006).CrossRef
17.
go back to reference N. A. Belov and A. N. Alabin, “Promising aluminum alloys with zirconium and scandium additions,” Non-Ferrous Met. 2, 99 (2007). N. A. Belov and A. N. Alabin, “Promising aluminum alloys with zirconium and scandium additions,” Non-Ferrous Met. 2, 99 (2007).
18.
go back to reference K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58, 5184–5195 (2010).CrossRef K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal aging,” Acta Mater. 58, 5184–5195 (2010).CrossRef
19.
go back to reference L. L. Rokhlin, N. R. Bochvar, and N. P. Leonova, “Study of decomposition of oversaturated solid solution in Al–Sc–Zr alloys at different ratio of scandium and zirconium,” Inorg. Mater. 2, 517–520 (2011).CrossRef L. L. Rokhlin, N. R. Bochvar, and N. P. Leonova, “Study of decomposition of oversaturated solid solution in Al–Sc–Zr alloys at different ratio of scandium and zirconium,” Inorg. Mater. 2, 517–520 (2011).CrossRef
20.
go back to reference K. Deane, S. L. Kampe, D. Swenson, and P. G. Sanders, “Precipitate evolution and strengthening in supersaturated rapidly solidified Al–Sc–Zr alloys,” Metall. Mater. Trans. A 48, 2030–2039 (2017).CrossRef K. Deane, S. L. Kampe, D. Swenson, and P. G. Sanders, “Precipitate evolution and strengthening in supersaturated rapidly solidified Al–Sc–Zr alloys,” Metall. Mater. Trans. A 48, 2030–2039 (2017).CrossRef
21.
go back to reference S. M. Amer, Yu. R. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef S. M. Amer, Yu. R. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef
22.
go back to reference H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, and J. Bin, “Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum,” Scr. Mater. 68, 59–62 (2013).CrossRef H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, and J. Bin, “Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum,” Scr. Mater. 68, 59–62 (2013).CrossRef
23.
go back to reference A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
24.
go back to reference S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef
25.
go back to reference Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef
26.
go back to reference R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
27.
go back to reference Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef
28.
go back to reference A. V. Pozdniakov, R. Y. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Y. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
29.
go back to reference A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef
30.
go back to reference R. Y. Barkov, A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Loginova, A. S. Prosviryakov, and A. V. Pozdniakov, “Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er–Yb–Sc alloys with good electrical conductivity,” J. Alloys Compd. 855, 157367 (2021).CrossRef R. Y. Barkov, A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Loginova, A. S. Prosviryakov, and A. V. Pozdniakov, “Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er–Yb–Sc alloys with good electrical conductivity,” J. Alloys Compd. 855, 157367 (2021).CrossRef
31.
go back to reference R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Fiz. Met. Metalloved. 121, 604–609 (2020). R. Yu. Barkov, O. A. Yakovtseva, O. I. Mamzurina, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. V. Mikhailovskaya, and A. V. Pozdniakov, “Effect of Yb on the structure and properties of an electroconductive Al–Y–Sc alloy,” Fiz. Met. Metalloved. 121, 604–609 (2020).
32.
go back to reference M. E. van Dalen, T. Gyger, D. C. Dunand, and D. N. Seidman, “Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys,” Acta Mater. 59, 7615–7626 (2011).CrossRef M. E. van Dalen, T. Gyger, D. C. Dunand, and D. N. Seidman, “Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys,” Acta Mater. 59, 7615–7626 (2011).CrossRef
33.
go back to reference N. Q. Vo, D. Bayansan, A. Sanaty-Zadeh, E. H. Ramos, and D. C. Dunand, “Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy,” Mater. 4, 65–69 (2018). N. Q. Vo, D. Bayansan, A. Sanaty-Zadeh, E. H. Ramos, and D. C. Dunand, “Effect of Yb microadditions on creep resistance of a dilute Al–Er–Sc–Zr alloy,” Mater. 4, 65–69 (2018).
34.
go back to reference G. Peng, K. Chen, H. Fang, and S. Chen, “A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy,” Mater. Sci. Eng., A 535, 311–315 (2012).CrossRef G. Peng, K. Chen, H. Fang, and S. Chen, “A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy,” Mater. Sci. Eng., A 535, 311–315 (2012).CrossRef
35.
go back to reference S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys,” J. Alloys Compd. 599, 65–70 (2014).CrossRef S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Role of Yb and Si on the precipitation hardening and recrystallization of dilute Al–Zr alloys,” J. Alloys Compd. 599, 65–70 (2014).CrossRef
36.
go back to reference A. V. Pozdniakov, V. Yarasu, R. Y. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, P. 116–119 (2017). A. V. Pozdniakov, V. Yarasu, R. Y. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, P. 116–119 (2017).
37.
go back to reference L. Z. He, X. H. Li, X. T. Liu, X. J. Wang, H. T. Zhang, and J. Z. Cui, “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A 527, 7510–7518 (2010).CrossRef L. Z. He, X. H. Li, X. T. Liu, X. J. Wang, H. T. Zhang, and J. Z. Cui, “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A 527, 7510–7518 (2010).CrossRef
38.
go back to reference X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, and H. Hao, “Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys,” Mater. Sci. Eng., A 552, 230–235 (2012).CrossRef X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, and H. Hao, “Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys,” Mater. Sci. Eng., A 552, 230–235 (2012).CrossRef
39.
go back to reference R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Y. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
40.
go back to reference K. Knipling, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).CrossRef K. Knipling, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).CrossRef
41.
go back to reference M. F. Ashby and L. M. Brown, “Diffraction contrast from spherically symmetrical coherency strains,” Philos. Mag. A. J. Theor. Exp. Appl. Phys. 8, No. 91, 1083–1103 (1963). M. F. Ashby and L. M. Brown, “Diffraction contrast from spherically symmetrical coherency strains,” Philos. Mag. A. J. Theor. Exp. Appl. Phys. 8, No. 91, 1083–1103 (1963).
42.
go back to reference I. S. Golovin, A. V. Mikhaylovskaya, and H.-R. Sinning, “Role of the β-phase in grain boundary and dislocation anelasticity in binary Al–Mg alloys,” J. Alloys Compd. 577, 622–632 (2013).CrossRef I. S. Golovin, A. V. Mikhaylovskaya, and H.-R. Sinning, “Role of the β-phase in grain boundary and dislocation anelasticity in binary Al–Mg alloys,” J. Alloys Compd. 577, 622–632 (2013).CrossRef
43.
go back to reference A. G. Mochugovskiy and A. V. Mikhaylovskaya, “Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys,” Mater. Lett. 275 (2020). A. G. Mochugovskiy and A. V. Mikhaylovskaya, “Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys,” Mater. Lett. 275 (2020).
44.
go back to reference A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021).CrossRef A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021).CrossRef
45.
go back to reference H. Tanaka, Y. Nagai, Y. Oguri, and H. Yoshida, “Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling,” Mater. Trans. 48, 2008–2013 (2007).CrossRef H. Tanaka, Y. Nagai, Y. Oguri, and H. Yoshida, “Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling,” Mater. Trans. 48, 2008–2013 (2007).CrossRef
46.
go back to reference W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014).CrossRef W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014).CrossRef
Metadata
Title
Structure and Properties of Al–4.5Mg–0.15Zr Compositions Alloyed with Er, Y, and Yb
Authors
A. G. Mochugovskiy
R. Yu. Barkov
A. V. Mikhaylovskaya
I. S. Loginova
O. A. Yakovtseva
A. V. Pozdniakov
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050088

Other articles of this Issue 5/2022

Physics of Metals and Metallography 5/2022 Go to the issue