Skip to main content
Top
Published in: Physics of Metals and Metallography 9/2021

01-09-2021 | STRENGTH AND PLASTICITY

Structure and Properties of New Heat-Resistant Cast Alloys Based on the Al–Cu–Y and Al–Cu–Er Systems

Authors: S. M. Amer, R. Yu. Barkov, A. S. Prosviryakov, A. V. Pozdniakov

Published in: Physics of Metals and Metallography | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure and mechanical properties of new high-temperature casting aluminum alloys Al–5.6Cu–2.0Y–1Mg–0.8Mn–0.3Zr–0.15Ti–0.15Fe–0.15Si and Al–5.4Cu–3.0Er–1.1Mg–0.9Mn–0.3Zr–0.15Ti–0.15Fe–0.15Si are investigated. In an alloy with yttrium, modification with titanium gives rise to a decrease in the grain size from 190 to 40 μm, while the grain size in an alloy with erbium is 25 μm. Regarding the casting properties, the alloys are comparable to silumins alloyed with copper and magnesium. The greatest strengthening effect after quenching is achieved with aging at 210°C; the hardness is 130–133 HV. The tensile yield point at room temperature is 303–306 MPa with a relative elongation of 0.4%. At elevated temperatures of 200 and 250°C, the yield stress decreases to 246–250 and 209–215 MPa, and the elongation increases to 3 and 4–5.5%, respectively. The long-term strength retention after 100 h exposure to 250°C is 117–118 MPa. The presence of a solid solution that is sufficiently alloyed and strengthening dispersoids of the Al3(Zr,Er), Al3(Zr,Y), and Al20Cu2Mn3 phases and the Al8Cu4Y, (Al,Cu)11Y3, (Al,Cu,Y,Mn), Al8Cu4ErAl3Er, and (Al,Cu,Er,Mn) phases of crystallization origin in new alloys provide high levels of heat resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference GOST 1583–93. Casting Aluminum Alloys. Technical Conditions (IPK Izd-vo standartov, Minsk, 2000) [in Russian]. GOST 1583–93. Casting Aluminum Alloys. Technical Conditions (IPK Izd-vo standartov, Minsk, 2000) [in Russian].
2.
go back to reference V. S. Zolotorevsky and N. A. Belov, Metal Science of Casting Aluminum Alloys (MISiS, Moscow, 2005). V. S. Zolotorevsky and N. A. Belov, Metal Science of Casting Aluminum Alloys (MISiS, Moscow, 2005).
3.
go back to reference V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007).CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007).CrossRef
4.
go back to reference I. I. Novikov, Hot Brittleness of Nonferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Nonferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
5.
go back to reference V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).CrossRef
6.
go back to reference V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef
7.
go back to reference P. K. Shurkin, N. A. Belov, A. F. Musin, and A. A. Akse-nov, “ New high-strength casting aluminum alloy based on the Al–Zn–Mg–Ca–Fe system without requirement for heat treatment,” Izv. Vuzov. Tsvetn. Metall., No. 1, 48-58 (2020). P. K. Shurkin, N. A. Belov, A. F. Musin, and A. A. Akse-nov, “ New high-strength casting aluminum alloy based on the Al–Zn–Mg–Ca–Fe system without requirement for heat treatment,” Izv. Vuzov. Tsvetn. Metall., No. 1, 48-58 (2020).
8.
go back to reference P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samokhina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, No. 2, 135–142 (2020).CrossRef P. K. Shurkin, N. A. Belov, A. F. Musin, and M. E. Samokhina, “Effect of calcium and silicon on the character of solidification and strengthening of the Al–8% Zn–3% Mg alloy,” Phys. Met. Metallogr. 121, No. 2, 135–142 (2020).CrossRef
9.
go back to reference N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519–521(PART 1), 395–400 (2006).CrossRef N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519–521(PART 1), 395–400 (2006).CrossRef
10.
go back to reference N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef
11.
go back to reference A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, No. 12, 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, No. 12, 1489–1496 (2018).CrossRef
12.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 476–482 (2020).CrossRef
13.
go back to reference A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef
14.
go back to reference N. A. Belov, E. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, No. 2, 188–194 (2016).CrossRef N. A. Belov, E. A. Belov, E. A. Naumova, T. A. Bazlova, and E. V. Alekseeva, “Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, No. 2, 188–194 (2016).CrossRef
15.
go back to reference A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additives of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Metalloved. Term. Obr. Met. 58, No. 9, 25–30 (2016). A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additives of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Metalloved. Term. Obr. Met. 58, No. 9, 25–30 (2016).
16.
go back to reference A. V. Pozdnyakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef A. V. Pozdnyakov, V. Yarasu, R. Yu. Barkov, O. A. Yakov-tseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef
17.
go back to reference H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef
18.
go back to reference R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdnyakov, “Influence of Zr and Er contents on the structure and properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. (2021) (in press). R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, and A. V. Pozdnyakov, “Influence of Zr and Er contents on the structure and properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. (2021) (in press).
19.
go back to reference A. V. Pozdnyakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
20.
go back to reference A. V. Pozdnyakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity,” J. Mater. Sci. Technol. 36, 1–6 (2020).CrossRef
21.
go back to reference Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef
22.
go back to reference S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef
23.
go back to reference S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).CrossRef S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).CrossRef
24.
go back to reference Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef
25.
go back to reference Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical properties of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical properties of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef
26.
go back to reference M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef
27.
go back to reference S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef
28.
go back to reference R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
29.
go back to reference R. Yu. Barkov, A. G. Mochugovskii, M. G. Khomutov, and A. V. Pozdnyakov, “Effect of Zr and Er small additives on the phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, No. 2, 161–168 (2021).CrossRef R. Yu. Barkov, A. G. Mochugovskii, M. G. Khomutov, and A. V. Pozdnyakov, “Effect of Zr and Er small additives on the phase composition and mechanical properties of Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, No. 2, 161–168 (2021).CrossRef
30.
go back to reference M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).CrossRef M. Li, H. Wang, Z. Wei, and Z. Zhu, “The effect of Y on the hot-tearing resistance of Al–5 wt % Cu based alloy,” Mater. Des. 31, 2483–2487 (2010).CrossRef
31.
go back to reference L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).CrossRef L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).CrossRef
32.
go back to reference A. V. Pozdnyakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
33.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef
34.
go back to reference S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, No. 15, 5345–5353 (2020).CrossRef S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, and A. V. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, No. 15, 5345–5353 (2020).CrossRef
35.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, No. 12, 1227–1232 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, No. 12, 1227–1232 (2020).CrossRef
36.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).CrossRef
37.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, No. 10, 1002–1007 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, No. 10, 1002–1007 (2020).CrossRef
38.
go back to reference GOST 4784-2019. Aluminum and Wrought Aluminum Alloys. Brands (IPK Izd-vo Standartov, Moscow, 2019). GOST 4784-2019. Aluminum and Wrought Aluminum Alloys. Brands (IPK Izd-vo Standartov, Moscow, 2019).
39.
go back to reference ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2. ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2.
40.
go back to reference A. Lotfy, A. V. Pozdniakov, V. S. Zolotorevskiy, E. Mohamed, M. T. Abou El-Khair, A. Daoud, and F. Fairouz, “Microstructure, compression and creep properties of Al–5% Cu–0.8Mn/5% B4C composites,” Mater. Res. Exp. 6, 095530 (2019).CrossRef A. Lotfy, A. V. Pozdniakov, V. S. Zolotorevskiy, E. Mohamed, M. T. Abou El-Khair, A. Daoud, and F. Fairouz, “Microstructure, compression and creep properties of Al–5% Cu–0.8Mn/5% B4C composites,” Mater. Res. Exp. 6, 095530 (2019).CrossRef
Metadata
Title
Structure and Properties of New Heat-Resistant Cast Alloys Based on the Al–Cu–Y and Al–Cu–Er Systems
Authors
S. M. Amer
R. Yu. Barkov
A. S. Prosviryakov
A. V. Pozdniakov
Publication date
01-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 9/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21090027

Other articles of this Issue 9/2021

Physics of Metals and Metallography 9/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

NMR Study of Cobalt-Containing Nanowires of Various Types