Skip to main content
Top
Published in:

08-05-2022

Structure and Properties of Surface Layers Obtained Via Nonvacuum Electron-Beam Cladding with Copper and Boron Powder Mixtures

Authors: K. I. Emurlaev, M. G. Golkovsky, N. V. Stepanova, Z. B. Bataeva

Published in: Metallurgist | Issue 11-12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the innovative use of nonvacuum electron-beam cladding to create high-thickness copper-alloyed surface layers on steels. By incorporating copper and boron powder mixtures, the study aims to enhance the strength and corrosion resistance of steels. The research focuses on the structural and mechanical properties of these surface layers, highlighting the formation of eutectic structures and the distribution of ε-copper nanoparticles. The findings reveal significant improvements in microhardness and wear resistance, making the surface-alloyed materials superior to conventional steels. The study also explores the tribotechnical properties of these layers, demonstrating their superior performance under sliding friction conditions. The unique approach of using nonvacuum electron-beam cladding offers promising solutions for enhancing the performance of steels in various industrial applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
1.
go back to reference D. M. Buck, “Copper in steel: the influence on corrosion,” J. Ind. Eng. Chem., 5(6), 447–452 (2013).CrossRef D. M. Buck, “Copper in steel: the influence on corrosion,” J. Ind. Eng. Chem., 5(6), 447–452 (2013).CrossRef
2.
go back to reference B. Li, H. Qu, and Y. Lang, “Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels,” Corros. Sci., 173, Art. 108791 (2020).CrossRef B. Li, H. Qu, and Y. Lang, “Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels,” Corros. Sci., 173, Art. 108791 (2020).CrossRef
3.
go back to reference X. Y. San, B. Zhang, B. Wu, X. X. Wei, E. E. Oguzie, and X. L. Ma, “Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM,” Corros. Sci., 130, 143–152 (2018).CrossRef X. Y. San, B. Zhang, B. Wu, X. X. Wei, E. E. Oguzie, and X. L. Ma, “Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM,” Corros. Sci., 130, 143–152 (2018).CrossRef
4.
go back to reference Z. X. Zhang, G. Lin, and Z. Xu, “Effects of light predeformation on pitting corrosion resistance of copper-bearing ferrite antibacterial stainless steel,” J. Mater. Process. Technol., 205, 419–424 (2008).CrossRef Z. X. Zhang, G. Lin, and Z. Xu, “Effects of light predeformation on pitting corrosion resistance of copper-bearing ferrite antibacterial stainless steel,” J. Mater. Process. Technol., 205, 419–424 (2008).CrossRef
5.
go back to reference S. Jeon, S. Kim, I. Lee, J. Park, K. Kim, J. Kim, and Y. Park, “Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high Performance duplex stainless steels,” Corrosion Science, 53, 1408–1416 (2011).CrossRef S. Jeon, S. Kim, I. Lee, J. Park, K. Kim, J. Kim, and Y. Park, “Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high Performance duplex stainless steels,” Corrosion Science, 53, 1408–1416 (2011).CrossRef
6.
go back to reference J. Zhang and D. J. Young, “Effect of copper on metal dusting of austenitic stainless steels,” Corros. Sci., 49, 1450–1467 (2007).CrossRef J. Zhang and D. J. Young, “Effect of copper on metal dusting of austenitic stainless steels,” Corros. Sci., 49, 1450–1467 (2007).CrossRef
7.
go back to reference K. Shubhank and Y. Kang, “Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system,” Comput. Coupling Ph. Diagr. Thermochem., 45, 127–137 (2014).CrossRef K. Shubhank and Y. Kang, “Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system,” Comput. Coupling Ph. Diagr. Thermochem., 45, 127–137 (2014).CrossRef
8.
go back to reference G. I. Silman, V. V. Kamynin, and V. V. Goncharov, “The mechanisms of the influence of copper on the formation of structure in cast iron,” MiTOM, No. 9, 16–22 (2007). G. I. Silman, V. V. Kamynin, and V. V. Goncharov, “The mechanisms of the influence of copper on the formation of structure in cast iron,” MiTOM, No. 9, 16–22 (2007).
9.
go back to reference G. I. Silman, V. V. Kamynin, and A. A. Tarasov, “Effect of copper on structure formation in cast iron,” Met. Sci. Heat Treat., 45, No. 7-8, 254–258 (2003).CrossRef G. I. Silman, V. V. Kamynin, and A. A. Tarasov, “Effect of copper on structure formation in cast iron,” Met. Sci. Heat Treat., 45, No. 7-8, 254–258 (2003).CrossRef
10.
go back to reference S. Upadhyay and K. K. Saxena, “Effect of Cu and Mo addition on mechanical properties and microstructure of gray cast iron: An overview,” Mater. Today: Proc., 26, Part 2, 2462–2470 (2020). S. Upadhyay and K. K. Saxena, “Effect of Cu and Mo addition on mechanical properties and microstructure of gray cast iron: An overview,” Mater. Today: Proc., 26, Part 2, 2462–2470 (2020).
11.
go back to reference H. Sazegaran, F. Teimoori, H. Rastegarian, and A. M. Naserian-Nik, “Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron,” J. Min. Metall., Sect. B Metall., 57, B. 1, 145–154 (2021). H. Sazegaran, F. Teimoori, H. Rastegarian, and A. M. Naserian-Nik, “Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron,” J. Min. Metall., Sect. B Metall., 57, B. 1, 145–154 (2021).
12.
go back to reference I. Le May and L. M. -D. Shetki, Copper in Ferrous Metals [in Russian], ed. O. A. Bannykh, Metallurgiya, Moscow (1988). I. Le May and L. M. -D. Shetki, Copper in Ferrous Metals [in Russian], ed. O. A. Bannykh, Metallurgiya, Moscow (1988).
13.
go back to reference D. V. Lazurenko, G. I. Alferova, K. I. Emurlaev, Y. Y. Emurlaeva, I. A. Bataev, T. S. Ogneva, A. A. Ruktuev, N. V. Stepanova, A. A. Bataev et al., “Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures,” Surf. Coat. Technol., 395, Art. 125927, 14 (2020). D. V. Lazurenko, G. I. Alferova, K. I. Emurlaev, Y. Y. Emurlaeva, I. A. Bataev, T. S. Ogneva, A. A. Ruktuev, N. V. Stepanova, A. A. Bataev et al., “Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures,” Surf. Coat. Technol., 395, Art. 125927, 14 (2020).
14.
go back to reference W. Osterle, C. Prietzel, H. Kloss, and A. I. Dmitriev, “On the role of copper in brake friction materials,” Tribol. Int., 43, 2317–2326 (2010).CrossRef W. Osterle, C. Prietzel, H. Kloss, and A. I. Dmitriev, “On the role of copper in brake friction materials,” Tribol. Int., 43, 2317–2326 (2010).CrossRef
15.
go back to reference I. A. Bataev, N. V. Stepanova, A. A. Bataev, A. A. Nikulina, and A. A. Razumakov, “Aspects of isolation of nanosized particles of ε-phase of copper in ferrite gaps of lamellar pearlite,” Fiz. Metall Metalloved., 117, No. 9, 932–937 (2016). I. A. Bataev, N. V. Stepanova, A. A. Bataev, A. A. Nikulina, and A. A. Razumakov, “Aspects of isolation of nanosized particles of ε-phase of copper in ferrite gaps of lamellar pearlite,” Fiz. Metall Metalloved., 117, No. 9, 932–937 (2016).
16.
go back to reference L. N. Garcia, A. J. Tolley, F. D. Carazo, and R. E. Boeri, “Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons,” Mater. Sci. Technol., 35, B. 18, 2252–2258 (2019). L. N. Garcia, A. J. Tolley, F. D. Carazo, and R. E. Boeri, “Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons,” Mater. Sci. Technol., 35, B. 18, 2252–2258 (2019).
17.
go back to reference J. O. Agunsoye, S. A. Bello, S. B. Hassan, R. G. Adeyemo, and J. M. Odii, “The effect of copper addition on the mechanical and wear properties of gray cast iron,” J. Miner. Mater. Character. Eng., 2, 470–483 (2014). J. O. Agunsoye, S. A. Bello, S. B. Hassan, R. G. Adeyemo, and J. M. Odii, “The effect of copper addition on the mechanical and wear properties of gray cast iron,” J. Miner. Mater. Character. Eng., 2, 470–483 (2014).
18.
go back to reference B. Zhang, B. Xu, and Yi. Xu, “Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts,” Tribol. Int., 44(7), 878–886 (2011). B. Zhang, B. Xu, and Yi. Xu, “Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts,” Tribol. Int., 44(7), 878–886 (2011).
19.
go back to reference W. Zhai, W. Lu, and X. Liu, “Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces,” Tribol. Int., 129, 75–81 (2019).CrossRef W. Zhai, W. Lu, and X. Liu, “Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces,” Tribol. Int., 129, 75–81 (2019).CrossRef
20.
go back to reference A. C. P. Rodrigues, W. Oesterle, and T. Gradt, “Impact of coppernanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite,” Tribol. Int., 110, 103–112 (2017).CrossRef A. C. P. Rodrigues, W. Oesterle, and T. Gradt, “Impact of coppernanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite,” Tribol. Int., 110, 103–112 (2017).CrossRef
21.
go back to reference I. A. Bataev, M. G. Golkovskii, A. A. Losinskaya, A. A. Bataev, A. I. Popelyukh, T. Hassel, and D. D. Golovin, “Non-vacuum electron-beam carburizing and surface hardening of mild steel,” Appl. Surf. Sci., 322, 6–14 (2014).CrossRef I. A. Bataev, M. G. Golkovskii, A. A. Losinskaya, A. A. Bataev, A. I. Popelyukh, T. Hassel, and D. D. Golovin, “Non-vacuum electron-beam carburizing and surface hardening of mild steel,” Appl. Surf. Sci., 322, 6–14 (2014).CrossRef
22.
go back to reference M. Eroglu, “Boride coatings on steel using shielded metal ARC welding electrode: microstructure and hardness,” Surf. Coat. Tech., 203, 2229–2235 (2009).CrossRef M. Eroglu, “Boride coatings on steel using shielded metal ARC welding electrode: microstructure and hardness,” Surf. Coat. Tech., 203, 2229–2235 (2009).CrossRef
23.
go back to reference O. Lenivtseva, I. Bataev, M. Golkovski, A. Bataev, V. Samoilenko, and N. Plotnikova, “Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon,” Appl. Surf. Sci., 355, 320–326 (2015).CrossRef O. Lenivtseva, I. Bataev, M. Golkovski, A. Bataev, V. Samoilenko, and N. Plotnikova, “Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon,” Appl. Surf. Sci., 355, 320–326 (2015).CrossRef
24.
go back to reference D. V. Lazurenko, I. S. Laptev, I. Bataev, A. A. Ruktuev, C. Gollwitzer, et al., “Influence of the Ti/Al/Nb ratio on the structure and properties on intermetallic layers obtained on titanium by non-vacuum electron beam cladding,” Mater. Character., 163, Art. 110246, 13 p. (2020). D. V. Lazurenko, I. S. Laptev, I. Bataev, A. A. Ruktuev, C. Gollwitzer, et al., “Influence of the Ti/Al/Nb ratio on the structure and properties on intermetallic layers obtained on titanium by non-vacuum electron beam cladding,” Mater. Character., 163, Art. 110246, 13 p. (2020).
25.
go back to reference D. A. Santana, G. Y. Koga, W. Wolf, I. A. Bataev, A. A. Ruktuev, C. Bolfarini, C. S. Kiminami, W. J. Botta, and A. M. Jorge, “Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding,” Surf. Coat. Tech., 386, Art. 125466 (2020).CrossRef D. A. Santana, G. Y. Koga, W. Wolf, I. A. Bataev, A. A. Ruktuev, C. Bolfarini, C. S. Kiminami, W. J. Botta, and A. M. Jorge, “Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding,” Surf. Coat. Tech., 386, Art. 125466 (2020).CrossRef
26.
go back to reference T. A. Krylova and Yu. A. Chumakov, “Fabrication of Cr–Ti–C composite coating by non-vacuum electron beam cladding,” Mater. Lett., 274, Art. 128022 (2020). T. A. Krylova and Yu. A. Chumakov, “Fabrication of Cr–Ti–C composite coating by non-vacuum electron beam cladding,” Mater. Lett., 274, Art. 128022 (2020).
Metadata
Title
Structure and Properties of Surface Layers Obtained Via Nonvacuum Electron-Beam Cladding with Copper and Boron Powder Mixtures
Authors
K. I. Emurlaev
M. G. Golkovsky
N. V. Stepanova
Z. B. Bataeva
Publication date
08-05-2022
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01274-6

Premium Partners