Skip to main content
Top
Published in: Physics of Metals and Metallography 7/2020

01-07-2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Texture Evolution of the Metastable Austenitic Steel during Cold Working

Authors: M. V. Odnobokova, A. N. Belyakov, I. N. Nugmanov, R. O. Kaibyshev

Published in: Physics of Metals and Metallography | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work studies the structure and texture evolution in the 03Kh19N10 corrosion-resistant metastable austenitic steel (0.05C–18.2Cr–8.8Ni–1.65Mn–0.43Si–0.05P–0.04S wt %, and Fe for balance) during cold rolling, which results in twinning and martensitic transformation. The strain-induced martensite nucleates heterogeneously in the microshear bands and at their intersections. The fraction of strain-induced martensite increases with increasing true strain and approaches 80% at е = 3. The development of deformation twins, microshear bands, and martensitic crystallites results in the formation of a uniform nanocrystalline structure consisting of elongated γ/α' crystallites 100 nm in cross-section size after large deformation (е = 2–3). The austenite texture after cold rolling is characterized by the strong Brass ({110} 〈112〉) and Goss ({110}〈001〉) texture components, whereas the strain-induced martensite texture is characterized by strong texture component I* ({223}〈110〉) and an increased orientation density along γ fiber (〈111〉 ∥ ND). The orientation of the γ/α'-phase boundaries depends on the strain value.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. H. Lo, C. H. Shek, and J. Lai, “Recent developments in stainless steels,” Mater. Sci. Eng., R 65, 39–104 (2009). K. H. Lo, C. H. Shek, and J. Lai, “Recent developments in stainless steels,” Mater. Sci. Eng., R 65, 39–104 (2009).
2.
go back to reference A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on the structure, phase composition, and micromechanical properties of the metastable austenitic steel strengthened by nanostructuring frictional treatment,” Phys. Met. Metallogr. 119, 1196–1203 (2018).CrossRef A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on the structure, phase composition, and micromechanical properties of the metastable austenitic steel strengthened by nanostructuring frictional treatment,” Phys. Met. Metallogr. 119, 1196–1203 (2018).CrossRef
3.
go back to reference A. V. Makarov and L. G. Korshunov, “Metallophysical foundations of nanostructuring frictional treatment of steels,” Phys. Met. Metallogr. 120, 303–311 (2019).CrossRef A. V. Makarov and L. G. Korshunov, “Metallophysical foundations of nanostructuring frictional treatment of steels,” Phys. Met. Metallogr. 120, 303–311 (2019).CrossRef
4.
go back to reference V. V. Sagaradze and A. I. Uvarov, Strengthening of Austenitic Steels (Nauka, Moscow, 1989) [in Russian]. V. V. Sagaradze and A. I. Uvarov, Strengthening of Austenitic Steels (Nauka, Moscow, 1989) [in Russian].
5.
go back to reference V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrO RAN, Ekaterinburg, 2013) [in Russian]. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrO RAN, Ekaterinburg, 2013) [in Russian].
6.
go back to reference M. Odnobokova, A. Belyakov, and R. Kaibyshev, “Grain refinement and strengthening of austenitic stainless steels during large strain cold rolling,” Philos. Mag. 99, 531–556 (2019).CrossRef M. Odnobokova, A. Belyakov, and R. Kaibyshev, “Grain refinement and strengthening of austenitic stainless steels during large strain cold rolling,” Philos. Mag. 99, 531–556 (2019).CrossRef
7.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60,130–207 (2014).CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60,130–207 (2014).CrossRef
8.
go back to reference P. S. Kusakin and R. O. Kaibyshev, “High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties,” Rev. Adv. Mater. Sci. 44, 326–360 (2016). P. S. Kusakin and R. O. Kaibyshev, “High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties,” Rev. Adv. Mater. Sci. 44, 326–360 (2016).
9.
go back to reference Z. Yanushkevich, A. Belyakov, C. Haase, D. A. Molodov, and R. Kaibyshev, “Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling,” Mater. Sci. Eng., A 651, 763–773 (2016).CrossRef Z. Yanushkevich, A. Belyakov, C. Haase, D. A. Molodov, and R. Kaibyshev, “Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling,” Mater. Sci. Eng., A 651, 763–773 (2016).CrossRef
10.
go back to reference M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, G. I. Raab, and R. Z. Valiev, “Superior strength of austenitic steel produced by combined processing, including equal-channel angular pressing and rolling,” Metals 6 (12), 310 (2016).CrossRef M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, G. I. Raab, and R. Z. Valiev, “Superior strength of austenitic steel produced by combined processing, including equal-channel angular pressing and rolling,” Metals 6 (12), 310 (2016).CrossRef
11.
go back to reference N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki, “Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels,” Acta Mater. 58, 895–903 (2010).CrossRef N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki, “Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels,” Acta Mater. 58, 895–903 (2010).CrossRef
12.
go back to reference I. I. Kositsyna and V. V. Sagaradze, “Phase transformations and mechanical properties of stainless steel in the nanostructural state,” Bull. Russ. Acad. Sci.: Phys. 71, 285–288 (2007).CrossRef I. I. Kositsyna and V. V. Sagaradze, “Phase transformations and mechanical properties of stainless steel in the nanostructural state,” Bull. Russ. Acad. Sci.: Phys. 71, 285–288 (2007).CrossRef
13.
go back to reference I. Yu. Litovchenko, A. N. Tyumentsev, N. V. Shevchenko, and A. V. Korznikov, “Evolution of structural and phase states at large plastic deformations of an austenitic steel 17Cr–14Ni–2Mo,” Phys. Met. Metallogr. 112,412–423 (2011).CrossRef I. Yu. Litovchenko, A. N. Tyumentsev, N. V. Shevchenko, and A. V. Korznikov, “Evolution of structural and phase states at large plastic deformations of an austenitic steel 17Cr–14Ni–2Mo,” Phys. Met. Metallogr. 112,412–423 (2011).CrossRef
14.
go back to reference A. N. Tyumentsev and I. Y. Litovchenko, “Models of dislocation formation and mechanical twinning by local reversible martensitic transformations in FCC nanocrystals,” Adv. Mater. Res. 1013, 234–241 (2014).CrossRef A. N. Tyumentsev and I. Y. Litovchenko, “Models of dislocation formation and mechanical twinning by local reversible martensitic transformations in FCC nanocrystals,” Adv. Mater. Res. 1013, 234–241 (2014).CrossRef
15.
go back to reference M. Odnobokova, A. Belyakov, and R. Kaibyshev, “Development of nanocrystalline 304L stainless steel by large strain cold working,” Metals 5, 656–668 (2015).CrossRef M. Odnobokova, A. Belyakov, and R. Kaibyshev, “Development of nanocrystalline 304L stainless steel by large strain cold working,” Metals 5, 656–668 (2015).CrossRef
16.
go back to reference V. Kraposhin, I. Jakovleva, L. Karkina, G. Nuzhny, T. Zubkova, and A. Talis, “Microtwinning as a common mechanism for the martensitic and pearlitic transformations,” J. Alloys Compd. 577, 30–36 (2013).CrossRef V. Kraposhin, I. Jakovleva, L. Karkina, G. Nuzhny, T. Zubkova, and A. Talis, “Microtwinning as a common mechanism for the martensitic and pearlitic transformations,” J. Alloys Compd. 577, 30–36 (2013).CrossRef
17.
go back to reference M. V. Odnobokova and A. N. Belyakov, “Effect of cold rolling and subsequent annealing on the microstructure and the microtexture of austenitic corrosion-resistant steels,” Russ. Metall. (Metally) 2019, 315–325 (2019).CrossRef M. V. Odnobokova and A. N. Belyakov, “Effect of cold rolling and subsequent annealing on the microstructure and the microtexture of austenitic corrosion-resistant steels,” Russ. Metall. (Metally) 2019, 315–325 (2019).CrossRef
18.
go back to reference S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISiS, Moscow, 2005) [in Russian]. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISiS, Moscow, 2005) [in Russian].
19.
go back to reference T. Leffers and R. K. Ray, “The brass-type texture and its deviation from the copper-type texture,” Prog. Mater. Sci. 54, 351–396 (2009).CrossRef T. Leffers and R. K. Ray, “The brass-type texture and its deviation from the copper-type texture,” Prog. Mater. Sci. 54, 351–396 (2009).CrossRef
Metadata
Title
Structure and Texture Evolution of the Metastable Austenitic Steel during Cold Working
Authors
M. V. Odnobokova
A. N. Belyakov
I. N. Nugmanov
R. O. Kaibyshev
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 7/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20070066

Other articles of this Issue 7/2020

Physics of Metals and Metallography 7/2020 Go to the issue