Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Structure-Controlled Synthesis

Authors : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Published in: Nanowires

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. The ability to control and modulate the composition, doping, crystal structure and morphology of semiconductor NWs allows researchers to explore applications of NWs for investigating fundamental scientific questions through developing new technologies. The chapter expands significantly upon the basic methods introduced in the previous chapter for NW synthesis by focusing on controlled growth of a host of NWs with modulated morphologies and structures, including axial and radial heterostructures, kinked, branched, and/or modulated doped structures, where the increased complexity in the NWs can enable unique functional properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef
2.
go back to reference M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122(36), 8801–8802 (2000)CrossRef M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122(36), 8801–8802 (2000)CrossRef
3.
go back to reference M.S. Gudiksen, J. Wang, C.M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105(19), 4062–4064 (2001)CrossRef M.S. Gudiksen, J. Wang, C.M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105(19), 4062–4064 (2001)CrossRef
4.
go back to reference Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)ADSCrossRef Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)ADSCrossRef
5.
go back to reference Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)ADSCrossRef Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)ADSCrossRef
6.
go back to reference W. Shi, H. Peng, Y. Zheng, N. Wang, N. Shang, Z. Pan, C. Lee, S. Lee, Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 12(18), 1343–1345 (2000)CrossRef W. Shi, H. Peng, Y. Zheng, N. Wang, N. Shang, Z. Pan, C. Lee, S. Lee, Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 12(18), 1343–1345 (2000)CrossRef
7.
go back to reference Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang, T. Noda, Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder. Appl. Phys. A 80(8), 1733–1736 (2005)ADSCrossRef Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang, T. Noda, Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder. Appl. Phys. A 80(8), 1733–1736 (2005)ADSCrossRef
8.
go back to reference W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 8(9), 3004–3009 (2008)ADSCrossRef W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 8(9), 3004–3009 (2008)ADSCrossRef
9.
go back to reference F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)CrossRef
10.
go back to reference G. Zheng, W. Lu, S. Jin, C.M. Lieber, Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16(21), 1890–1893 (2004)CrossRef G. Zheng, W. Lu, S. Jin, C.M. Lieber, Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16(21), 1890–1893 (2004)CrossRef
11.
go back to reference J. Kikkawa, Y. Ohno, S. Takeda, Growth rate of silicon nanowires. Appl. Phys. Lett. 86(12), 123109 (2005)ADSCrossRef J. Kikkawa, Y. Ohno, S. Takeda, Growth rate of silicon nanowires. Appl. Phys. Lett. 86(12), 123109 (2005)ADSCrossRef
12.
go back to reference M. Masi, C. Cavallotti; S. Carrà, Gas phase and surface kinetics of silicon chemical vapor deposition from silane and chlorosilanes, in Silicon-Based Materials and Devices, ed. by M. Tomozawa, H. Nalwa (Academic Press, San Diego, 2001) M. Masi, C. Cavallotti; S. Carrà, Gas phase and surface kinetics of silicon chemical vapor deposition from silane and chlorosilanes, in Silicon-Based Materials and Devices, ed. by M. Tomozawa, H. Nalwa (Academic Press, San Diego, 2001)
13.
go back to reference Y. Cui, X. Duan, J. Hu, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104(22), 5213–5216 (2000)CrossRef Y. Cui, X. Duan, J. Hu, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104(22), 5213–5216 (2000)CrossRef
14.
go back to reference L. Lauhon, M.S. Gudiksen, C.M. Lieber, Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004(362), 1247–1260 (1819) L. Lauhon, M.S. Gudiksen, C.M. Lieber, Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004(362), 1247–1260 (1819)
15.
go back to reference R. Agarwal, Heterointerfaces in semiconductor nanowires. Small 4(11), 1872–1893 (2008)CrossRef R. Agarwal, Heterointerfaces in semiconductor nanowires. Small 4(11), 1872–1893 (2008)CrossRef
16.
go back to reference R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119 R.S. Wagner, Growth of whiskers by vapor-phase reactions, in Whisker technology, ed. by A.P. Levitt (Wiley, New York, 1970), pp. 15–119
17.
go back to reference K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRef K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRef
18.
go back to reference J. Hu, M. Ouyang, P. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399(6731), 48–51 (1999)ADSCrossRef J. Hu, M. Ouyang, P. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399(6731), 48–51 (1999)ADSCrossRef
20.
go back to reference Y. Wu, R. Fan, P. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)ADSCrossRef Y. Wu, R. Fan, P. Yang, Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)ADSCrossRef
21.
go back to reference M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2(2), 87–89 (2002)ADSCrossRef M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2(2), 87–89 (2002)ADSCrossRef
22.
go back to reference M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058–1060 (2002)ADSCrossRef M. Björk, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058–1060 (2002)ADSCrossRef
23.
go back to reference M.T. Björk, C. Thelander, A.E. Hansen, L.E. Jensen, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Few-electron quantum dots in nanowires. Nano Lett. 4(9), 1621–1625 (2004)ADSCrossRef M.T. Björk, C. Thelander, A.E. Hansen, L.E. Jensen, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Few-electron quantum dots in nanowires. Nano Lett. 4(9), 1621–1625 (2004)ADSCrossRef
24.
go back to reference M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)ADSCrossRef M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)ADSCrossRef
25.
go back to reference D.J. Pena, J.K. Mbindyo, A.J. Carado, T.E. Mallouk, C.D. Keating, B. Razavi, T.S. Mayer, Template growth of photoconductive metal-CdSe-metal nanowires. J. Phys. Chem. B 106(30), 7458–7462 (2002)CrossRef D.J. Pena, J.K. Mbindyo, A.J. Carado, T.E. Mallouk, C.D. Keating, B. Razavi, T.S. Mayer, Template growth of photoconductive metal-CdSe-metal nanowires. J. Phys. Chem. B 106(30), 7458–7462 (2002)CrossRef
26.
go back to reference Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995), 61–65 (2004)ADSCrossRef Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995), 61–65 (2004)ADSCrossRef
27.
go back to reference Y.-C. Lin, K.-C. Lu, W.-W. Wu, J. Bai, L.J. Chen, K. Tu, Y. Huang, Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8(3), 913–918 (2008)ADSCrossRef Y.-C. Lin, K.-C. Lu, W.-W. Wu, J. Bai, L.J. Chen, K. Tu, Y. Huang, Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8(3), 913–918 (2008)ADSCrossRef
28.
go back to reference C. Yang, Z. Zhong, C.M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752), 1304–1307 (2005)ADSCrossRef C. Yang, Z. Zhong, C.M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752), 1304–1307 (2005)ADSCrossRef
29.
go back to reference T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)ADSCrossRef T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)ADSCrossRef
30.
go back to reference T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)ADSCrossRef T. Cohen-Karni, D. Casanova, J.F. Cahoon, Q. Qing, D.C. Bell, C.M. Lieber, Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett. 12(5), 2639–2644 (2012)ADSCrossRef
31.
go back to reference J.D. Christesen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, J.F. Cahoon, Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett. 13(12), 6281–6286 (2013)ADSCrossRef J.D. Christesen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, J.F. Cahoon, Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett. 13(12), 6281–6286 (2013)ADSCrossRef
32.
go back to reference L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)ADSCrossRef L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)ADSCrossRef
33.
go back to reference F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)ADSCrossRef F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)ADSCrossRef
34.
go back to reference F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)ADSCrossRef F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)ADSCrossRef
35.
go back to reference T.J. Kempa, S.-K. Kim, R.W. Day, H.-G. Park, D.G. Nocera, C.M. Lieber, Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 135(49), 18354–18357 (2013)CrossRef T.J. Kempa, S.-K. Kim, R.W. Day, H.-G. Park, D.G. Nocera, C.M. Lieber, Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 135(49), 18354–18357 (2013)CrossRef
36.
go back to reference M.N. Mankin, R.W. Day, R. Gao, Y.-S. No, S.-K. Kim, A.A. McClelland, D.C. Bell, H.-G. Park, C.M. Lieber, Facet-selective epitaxy of compound semiconductors on faceted silicon nanowires. Nano Lett. 15(7), 4776–4782 (2015)ADSCrossRef M.N. Mankin, R.W. Day, R. Gao, Y.-S. No, S.-K. Kim, A.A. McClelland, D.C. Bell, H.-G. Park, C.M. Lieber, Facet-selective epitaxy of compound semiconductors on faceted silicon nanowires. Nano Lett. 15(7), 4776–4782 (2015)ADSCrossRef
37.
go back to reference R.W. Day, M.N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D.C. Bell, H.-G. Park, C.M. Lieber, Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 10(4), 345–352 (2015)ADSCrossRef R.W. Day, M.N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D.C. Bell, H.-G. Park, C.M. Lieber, Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 10(4), 345–352 (2015)ADSCrossRef
38.
go back to reference A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84(21), 4176–4178 (2004)ADSCrossRef A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84(21), 4176–4178 (2004)ADSCrossRef
39.
go back to reference B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)ADSCrossRef B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)ADSCrossRef
40.
go back to reference D.C. Dillen, K. Kim, E.-S. Liu, E. Tutuc, Radial modulation doping in core-shell nanowires. Nat. Nanotechnol. 9(2), 116–120 (2014)ADSCrossRef D.C. Dillen, K. Kim, E.-S. Liu, E. Tutuc, Radial modulation doping in core-shell nanowires. Nat. Nanotechnol. 9(2), 116–120 (2014)ADSCrossRef
41.
go back to reference C. Cheng, H.J. Fan, Branched nanowires: synthesis and energy applications. Nano Today 7(4), 327–343 (2012)CrossRef C. Cheng, H.J. Fan, Branched nanowires: synthesis and energy applications. Nano Today 7(4), 327–343 (2012)CrossRef
42.
go back to reference D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4(5), 871–874 (2004)ADSCrossRef D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4(5), 871–874 (2004)ADSCrossRef
43.
go back to reference K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3(6), 380–384 (2004)ADSCrossRef K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, L. Samuelson, Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3(6), 380–384 (2004)ADSCrossRef
44.
go back to reference Q. Wan, J. Huang, Z. Xie, T. Wang, E.N. Dattoli, W. Lu, Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl. Phys. Lett. 92(10), 102101 (2008)ADSCrossRef Q. Wan, J. Huang, Z. Xie, T. Wang, E.N. Dattoli, W. Lu, Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. Appl. Phys. Lett. 92(10), 102101 (2008)ADSCrossRef
45.
go back to reference Q. Wan, E.N. Dattoli, W.Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, High-performance transparent conducting oxide nanowires. Nano Lett. 6(12), 2909–2915 (2006)ADSCrossRef Q. Wan, E.N. Dattoli, W.Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, High-performance transparent conducting oxide nanowires. Nano Lett. 6(12), 2909–2915 (2006)ADSCrossRef
46.
go back to reference K.A. Dick, K. Deppert, L.S. Karlsson, M.W. Larsson, W. Seifert, L. Wallenberg, L. Samuelson, Directed growth of branched nanowire structures. MRS Bull. 32(02), 127–133 (2007)CrossRef K.A. Dick, K. Deppert, L.S. Karlsson, M.W. Larsson, W. Seifert, L. Wallenberg, L. Samuelson, Directed growth of branched nanowire structures. MRS Bull. 32(02), 127–133 (2007)CrossRef
47.
go back to reference Y. Jung, D.-K. Ko, R. Agarwal, Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 7(2), 264–268 (2007)ADSCrossRef Y. Jung, D.-K. Ko, R. Agarwal, Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett. 7(2), 264–268 (2007)ADSCrossRef
48.
go back to reference W. Zhou, A. Pan, Y. Li, G. Dai, Q. Wan, Q. Zhang, B. Zou, Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 112(25), 9253–9260 (2008)CrossRef W. Zhou, A. Pan, Y. Li, G. Dai, Q. Wan, Q. Zhang, B. Zou, Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 112(25), 9253–9260 (2008)CrossRef
49.
go back to reference X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 108(30), 12212–12216 (2011)ADSCrossRef X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 108(30), 12212–12216 (2011)ADSCrossRef
50.
go back to reference A. Dong, R. Tang, W.E. Buhro, Solution-based growth and structural characterization of homo-and heterobranched semiconductor nanowires. J. Am. Chem. Soc. 129(40), 12254–12262 (2007)CrossRef A. Dong, R. Tang, W.E. Buhro, Solution-based growth and structural characterization of homo-and heterobranched semiconductor nanowires. J. Am. Chem. Soc. 129(40), 12254–12262 (2007)CrossRef
51.
go back to reference C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun, Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3(10), 3069–3076 (2009)CrossRef C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S.F. Yu, J. Zhang, H. Gong, H. Sun, Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3(10), 3069–3076 (2009)CrossRef
52.
go back to reference W. Zhou, C. Cheng, J. Liu, Y.Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H.H. Hng, T. Yu, Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21(13), 2439–2445 (2011)CrossRef W. Zhou, C. Cheng, J. Liu, Y.Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H.H. Hng, T. Yu, Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21(13), 2439–2445 (2011)CrossRef
53.
go back to reference J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@ MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011)CrossRef J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@ MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011)CrossRef
54.
go back to reference C. Cheng, B. Yan, S.M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, H.J. Fan, Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2(7), 1824–1828 (2010)CrossRef C. Cheng, B. Yan, S.M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, H.J. Fan, Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2(7), 1824–1828 (2010)CrossRef
55.
go back to reference L. Manna, E.C. Scher, A.P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122(51), 12700–12706 (2000)CrossRef L. Manna, E.C. Scher, A.P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122(51), 12700–12706 (2000)CrossRef
56.
go back to reference L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2(6), 382–385 (2003)ADSCrossRef L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2(6), 382–385 (2003)ADSCrossRef
57.
go back to reference D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996), 190–195 (2004)ADSCrossRef D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996), 190–195 (2004)ADSCrossRef
58.
go back to reference D. Wang, C.M. Lieber, Inorganic materials: nanocrystals branch out. Nat. Mater. 2(6), 355–356 (2003)ADSCrossRef D. Wang, C.M. Lieber, Inorganic materials: nanocrystals branch out. Nat. Mater. 2(6), 355–356 (2003)ADSCrossRef
59.
go back to reference H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef
60.
go back to reference M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19(19), 3047–3051 (2007)CrossRef M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19(19), 3047–3051 (2007)CrossRef
61.
go back to reference M.J. Bierman, Y.A. Lau, S. Jin, Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 7(9), 2907–2912 (2007)ADSCrossRef M.J. Bierman, Y.A. Lau, S. Jin, Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 7(9), 2907–2912 (2007)ADSCrossRef
62.
go back to reference R. Liu, Z.-A. Li, C. Zhang, X. Wang, M.A. Kamran, M. Farle, B. Zou, Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett. 13(6), 2997–3001 (2013)ADSCrossRef R. Liu, Z.-A. Li, C. Zhang, X. Wang, M.A. Kamran, M. Farle, B. Zou, Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties. Nano Lett. 13(6), 2997–3001 (2013)ADSCrossRef
63.
go back to reference M.J. Bierman, Y.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320(5879), 1060–1063 (2008)ADSCrossRef M.J. Bierman, Y.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320(5879), 1060–1063 (2008)ADSCrossRef
64.
go back to reference J. Zhu, H. Peng, A. Marshall, D. Barnett, W. Nix, Y. Cui, Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3(8), 477–481 (2008)ADSCrossRef J. Zhu, H. Peng, A. Marshall, D. Barnett, W. Nix, Y. Cui, Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3(8), 477–481 (2008)ADSCrossRef
65.
go back to reference S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328(5977), 476–480 (2010)ADSCrossRef S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328(5977), 476–480 (2010)ADSCrossRef
66.
go back to reference S. Jin, M.J. Bierman, S.A. Morin, A new twist on nanowire formation: screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 1(9), 1472–1480 (2010)CrossRef S. Jin, M.J. Bierman, S.A. Morin, A new twist on nanowire formation: screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 1(9), 1472–1480 (2010)CrossRef
67.
go back to reference B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)ADSCrossRef B. Tian, P. Xie, T.J. Kempa, D.C. Bell, C.M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 4(12), 824–829 (2009)ADSCrossRef
68.
go back to reference Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)ADSCrossRef Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)ADSCrossRef
69.
go back to reference B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)ADSCrossRef B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)ADSCrossRef
70.
go back to reference L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)ADSCrossRef L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13(2), 746–751 (2013)ADSCrossRef
71.
go back to reference A. Pevzner, Y. Engel, R. Elnathan, A. Tsukernik, Z. Barkay, F. Patolsky, Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires”. Nano Lett. 12(1), 7–12 (2012)ADSCrossRef A. Pevzner, Y. Engel, R. Elnathan, A. Tsukernik, Z. Barkay, F. Patolsky, Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires”. Nano Lett. 12(1), 7–12 (2012)ADSCrossRef
Metadata
Title
Structure-Controlled Synthesis
Authors
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_3

Premium Partners