Skip to main content
Top
Published in: Journal of Materials Science 6/2017

28-11-2016 | Original Paper

Structure, electronic, and growth strategies of the \( {\text{Fe}}_{m} {\text{NH}}_{n}^{ + } \) (1 ≤ m ≤ 5, 1 ≤ n ≤ 4) cation clusters

Authors: Zhi Li, Zhen Zhao

Published in: Journal of Materials Science | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The geometries, electronic, and growth strategies of the \( {\text{Fe}}_{m} {\text{NH}}_{n}^{ + } \) (1 ≤ m ≤ 5, 1 ≤ n ≤ 4) cation clusters have been investigated using all-electron density functional theory. The results show that H is transferred from NH n to Fe m when hydrogen supersaturated or the cluster size of Fe m is larger. \( {\text{Fe}}_{2} {\text{NH}}_{n = 1,2}^{ + } ,\;{\text{Fe}}_{4} {\text{NH}}_{n = 1,2}^{ + } ,\;{\text{Fe}}_{3} {\text{NH}}_{n = 3,4}^{ + } \) clusters are more stable than other considered \( {\text{Fe}}_{m} {\text{NH}}_{n}^{ + } \) clusters by the second derivative of the binding energies. From the highest occupied molecular orbital–lowest unoccupied molecular orbital gap curves, it can be seen that the Fe4NH+; \( {\text{Fe}}_{5} {\text{NH}}_{2}^{ + } ,\;{\text{Fe}}_{2} {\text{NH}}_{2}^{ + } ,\;{\text{Fe}}_{3} {\text{NH}}_{2}^{ + } ;\;{\text{Fe}}_{5} {\text{NH}}_{3}^{ + } ,\;{\text{FeNH}}_{3}^{ + } ;\;{\text{FeNH}}_{4}^{ + } ,\;{\text{Fe}}_{5} {\text{NH}}_{4}^{ + } \) have higher chemical reactivity. Summarizing up the association energies of Fe m NH+, it can be seen that \( {\text{Fe}}_{4}^{ + } \)–NH, Fe4–NH+, and Fe3 + \( {\text{FeNH}}_{n}^{ + } \) are the main three channels to product Fe4NH+.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shokrollahi H (2013) Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng C 33:2476–2487CrossRef Shokrollahi H (2013) Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng C 33:2476–2487CrossRef
2.
go back to reference Nakatani I, Hijikata M, Ozawa K (1993) Iron-nitride magnetic fluids prepared by vapour-liquid reaction and their magnetic properties. J Magn Magn Mater 122:10–14CrossRef Nakatani I, Hijikata M, Ozawa K (1993) Iron-nitride magnetic fluids prepared by vapour-liquid reaction and their magnetic properties. J Magn Magn Mater 122:10–14CrossRef
3.
go back to reference Li X, Liu Z, An H, Zhang X, Qi R (2007) Preparation of nano-magnetic fluid using plasma technique and its application in safety valves. Surf Coat Technol 201:5371–5373CrossRef Li X, Liu Z, An H, Zhang X, Qi R (2007) Preparation of nano-magnetic fluid using plasma technique and its application in safety valves. Surf Coat Technol 201:5371–5373CrossRef
4.
go back to reference Fateev A, Leipold F, Kusano Y, Stenum B, Tsakadze E, Bindslev H (2005) Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge. Plasma Process Polym 2:194–198CrossRef Fateev A, Leipold F, Kusano Y, Stenum B, Tsakadze E, Bindslev H (2005) Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge. Plasma Process Polym 2:194–198CrossRef
5.
go back to reference van den Oever PJ, van Helden JH, Lamers CCH, Engeln R, Schram DC, van de Sanden MCM, Kessels WMM (2005) Density and production of NH and NH2 in an Ar–NH3 expanding plasma jet. J Appl Phys 98:093301–093310CrossRef van den Oever PJ, van Helden JH, Lamers CCH, Engeln R, Schram DC, van de Sanden MCM, Kessels WMM (2005) Density and production of NH and NH2 in an Ar–NH3 expanding plasma jet. J Appl Phys 98:093301–093310CrossRef
6.
go back to reference van den Oever PJ, van Hemmen JL, van Helden JH, Schram DC, Engeln RAH, van de Sanden MCM, Kessels WMM (2006) Downstream ion and radical densities in an Ar–NH3 plasma generated by the expanding thermal plasma technique. Plasma Sources Sci Technol 15:546–555CrossRef van den Oever PJ, van Hemmen JL, van Helden JH, Schram DC, Engeln RAH, van de Sanden MCM, Kessels WMM (2006) Downstream ion and radical densities in an Ar–NH3 plasma generated by the expanding thermal plasma technique. Plasma Sources Sci Technol 15:546–555CrossRef
7.
go back to reference Kloc P, Wagner H-E, Trunec D, Navrátil Z, Fedoseev G (2010) An investigation of dielectric barrier discharge in Ar and Ar/NH3 mixture using cross-correlation spectroscopy. J Phys D 43:227–238CrossRef Kloc P, Wagner H-E, Trunec D, Navrátil Z, Fedoseev G (2010) An investigation of dielectric barrier discharge in Ar and Ar/NH3 mixture using cross-correlation spectroscopy. J Phys D 43:227–238CrossRef
8.
go back to reference Arakoni RA, Bhoj AN, Kushner MJ (2007) H2 generation in Ar/NH3 microdischarges. J Phys D 40:2476–2490CrossRef Arakoni RA, Bhoj AN, Kushner MJ (2007) H2 generation in Ar/NH3 microdischarges. J Phys D 40:2476–2490CrossRef
9.
go back to reference Li Z, Zhao Z, Li X (2012) Numerical model of an Ar/NH3 atmospheric pressure direct current discharge in parallel plate geometry. Phys Plasmas 19:793–797 Li Z, Zhao Z, Li X (2012) Numerical model of an Ar/NH3 atmospheric pressure direct current discharge in parallel plate geometry. Phys Plasmas 19:793–797
10.
11.
go back to reference Li Z, Zhao Z, Li X (2013) Modeling of plasma chemistry in an atmospheric pressure Ar/NH3 cylindrical dielectric barrier discharge described using the one-dimensional fluid model. Phys Plasmas 20:013503. doi:10.1063/1.4773218 CrossRef Li Z, Zhao Z, Li X (2013) Modeling of plasma chemistry in an atmospheric pressure Ar/NH3 cylindrical dielectric barrier discharge described using the one-dimensional fluid model. Phys Plasmas 20:013503. doi:10.​1063/​1.​4773218 CrossRef
13.
go back to reference Panda RN, Gajbhiye NS (1998) Magnetic properties of nanocrystalline γ′-Fe 4 N and ε-Fe 3 N synthesized by citrate route. IEEE Trans Magn 34:542–548CrossRef Panda RN, Gajbhiye NS (1998) Magnetic properties of nanocrystalline γ′-Fe 4 N and ε-Fe 3 N synthesized by citrate route. IEEE Trans Magn 34:542–548CrossRef
14.
go back to reference Zheng J, Yang R, Chen W, Xie L, Li X, Chen C (2009) Iron nitride thin films deposited by chloride assisted plasma enhanced chemical vapour deposition: facile stoichiometry control and mechanism study. J Phys D 42:185209. doi:10.1088/0022-3727/42/18/185209 CrossRef Zheng J, Yang R, Chen W, Xie L, Li X, Chen C (2009) Iron nitride thin films deposited by chloride assisted plasma enhanced chemical vapour deposition: facile stoichiometry control and mechanism study. J Phys D 42:185209. doi:10.​1088/​0022-3727/​42/​18/​185209 CrossRef
15.
go back to reference Rollmann G, Entel P (2004) Electron correlation effects in small iron clusters. Comput Lett 1:288–296CrossRef Rollmann G, Entel P (2004) Electron correlation effects in small iron clusters. Comput Lett 1:288–296CrossRef
16.
go back to reference Jackson KA, Knickelbein M, Koretsky G, Srinivas S (2000) The interaction of ammonia with small iron clusters: infrared spectra and density functional calculations of Fen(NH3)m and Fen(ND3)m complexes. Chem Phys 262:41–51CrossRef Jackson KA, Knickelbein M, Koretsky G, Srinivas S (2000) The interaction of ammonia with small iron clusters: infrared spectra and density functional calculations of Fen(NH3)m and Fen(ND3)m complexes. Chem Phys 262:41–51CrossRef
17.
go back to reference Zhang X, Lu Z, Ma D, Yang Z (2015) Adsorption and dissociation of ammonia on small iron clusters. Int J Hydrog Energy 40:346–352CrossRef Zhang X, Lu Z, Ma D, Yang Z (2015) Adsorption and dissociation of ammonia on small iron clusters. Int J Hydrog Energy 40:346–352CrossRef
18.
go back to reference Gutsev GL, Mochena M, Bauschlicher CW (2005) Interaction of water with small Fen clusters. Chem Phys 314:291–298CrossRef Gutsev GL, Mochena M, Bauschlicher CW (2005) Interaction of water with small Fen clusters. Chem Phys 314:291–298CrossRef
19.
20.
go back to reference Gutsev GL, Mochena M, Bauschlicher CW (2005) Dissociative and associative attachment of OH to iron clusters. Chem Phys Lett 407:180–185CrossRef Gutsev GL, Mochena M, Bauschlicher CW (2005) Dissociative and associative attachment of OH to iron clusters. Chem Phys Lett 407:180–185CrossRef
21.
go back to reference Garza-Galindo R, Castro M, Duncan MA (2012) Theoretical study of nascent hydration in the Fe+(H2O)n system. J Phys Chem A 116:1906–1913CrossRef Garza-Galindo R, Castro M, Duncan MA (2012) Theoretical study of nascent hydration in the Fe+(H2O)n system. J Phys Chem A 116:1906–1913CrossRef
22.
go back to reference Valencia I, Guevara-García A, Castro M (2009) Bonding and magnetism of Fe6 −(C6H6)m, m = 1, 2. J Phys Chem A 113:6222–6238CrossRef Valencia I, Guevara-García A, Castro M (2009) Bonding and magnetism of Fe6 (C6H6)m, m = 1, 2. J Phys Chem A 113:6222–6238CrossRef
23.
go back to reference Zacarias A, Torrens H, Castro M (1997) A density functional study of Fe−N2, Fe−N2 +, and Fe−N2 −. Int J Quantum Chem 61:467–473CrossRef Zacarias A, Torrens H, Castro M (1997) A density functional study of FeN2, FeN2 +, and FeN2 . Int J Quantum Chem 61:467–473CrossRef
24.
go back to reference Xu B, Yang C, Wang M, Ma X (2010) Structural, electronic, and magnetic properties of FenO m + (n + m = 5) clusters. J Mol Struct Theochem 957:26–30CrossRef Xu B, Yang C, Wang M, Ma X (2010) Structural, electronic, and magnetic properties of FenO m + (n + m = 5) clusters. J Mol Struct Theochem 957:26–30CrossRef
25.
go back to reference Castro M (1997) The role of the Jahn–Teller distortions on the structural, binding, and magnetic properties of small Fen clusters, n ≤ 7. Int J Quantum Chem 64:223–230CrossRef Castro M (1997) The role of the Jahn–Teller distortions on the structural, binding, and magnetic properties of small Fen clusters, n ≤ 7. Int J Quantum Chem 64:223–230CrossRef
26.
go back to reference Castro M, Jamorski C, Salahub DR (1997) Structure, bonding, and magnetism of small Fen, Con, and Nin. Chem Phys Lett 271:133–142CrossRef Castro M, Jamorski C, Salahub DR (1997) Structure, bonding, and magnetism of small Fen, Con, and Nin. Chem Phys Lett 271:133–142CrossRef
27.
go back to reference Ma QM, Xie Z, Wang BR, Liu Y, Li YC (2011) Structure, stability and magnetic moments of the FenCr (n = 1–12) clusters: all-electron density functional theory investigations. Solid State Commun 151:806–810CrossRef Ma QM, Xie Z, Wang BR, Liu Y, Li YC (2011) Structure, stability and magnetic moments of the FenCr (n = 1–12) clusters: all-electron density functional theory investigations. Solid State Commun 151:806–810CrossRef
28.
go back to reference Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRef Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRef
29.
go back to reference Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef
30.
go back to reference Ma QM, Xie Z, Wang J, Liu Y, Li YC (2007) Structures, binding energies and magnetic moments of small iron clusters: a study based on all-electron DFT. Solid State Commun 142:114–119CrossRef Ma QM, Xie Z, Wang J, Liu Y, Li YC (2007) Structures, binding energies and magnetic moments of small iron clusters: a study based on all-electron DFT. Solid State Commun 142:114–119CrossRef
31.
go back to reference Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
32.
go back to reference Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
33.
go back to reference Mülliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840CrossRef Mülliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840CrossRef
34.
go back to reference Lanzani G, Lausanne K (2010) NH3 adsorption and dissociation on a nanosized iron cluster. Int J Hydrog Energy 35:6571–6577CrossRef Lanzani G, Lausanne K (2010) NH3 adsorption and dissociation on a nanosized iron cluster. Int J Hydrog Energy 35:6571–6577CrossRef
Metadata
Title
Structure, electronic, and growth strategies of the (1 ≤ m ≤ 5, 1 ≤ n ≤ 4) cation clusters
Authors
Zhi Li
Zhen Zhao
Publication date
28-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0617-x

Other articles of this Issue 6/2017

Journal of Materials Science 6/2017 Go to the issue

Premium Partners